­
­
­
­

Inventi Impact - Microwave

Patent Watch

  • OBTAINMENT OF CHITIN FROM SHRIMP WASTE BY MEANS OF MICROWAVE AND/OR AUTOCLAVING IN COMBINATION WITH ORGANIC ACIDS IN A SINGLE STAGE

    This invention relates to the development of a new method of production of chitin through employment of a microwave process under pressure and/or autoclave with organic acids. This new method eliminates salts and proteins in a single stage and reduces contamination levels. The chitin obtained has application in the areas of medicine, foods, cosmetics and construction, among others.

  • MICROWAVE INDUCED DESTRUCTION OF SILOXANES AND HYDROGEN SULFIDE IN BIOGAS

    The invention is an apparatus and method to remove hydrogen sulfide and siloxanes from biogas and destroy the contaminants in microwave reactors. Hydrogen sulfide and siloxane are removed from biogas using an adsorbent media such as activated carbon. The media is regenerated in a microwave reactor where the hydrogen sulfide and siloxane are removed in a sweep gas. In one process, siloxane is oxidized to silicon dioxide in a second microwave reactor and removed with a filter. Hydrogen sulfide if first oxidized to sulfur dioxide, then reduced to sulfur in a third microwave reactor and removed with a filter. In another process, siloxane is combined with water to form silicon dioxide and hydrogen sulfide is reduced to elemental sulfur in a microwave reactor. These reactants are removed with a filter. The remaining sweep gas containing hydrogen and low molecular weight hydrocarbons is returned to the biogas stream.

  • METHOD AND APPARATUS FOR RAPID THERMAL PROCESSING AND BONDING OF MATERIALS USING RF AND MICROWAVES

    A method and apparatus for rapid and selective heating of materials using variable frequency RF and microwaves. The apparatus uses variable frequency solid state electronics as a microwave power source, a novel microwave heating head to couple microwave energy to the target materials and a match-up network to tune the frequency and impedance match between the microwave source and the load. An electronic and computer measurement and control system is employed to monitor and control the microwave heating process. The method teaches the use of inductive microwave coupling for thin conductive materials such as metal film and impurity doped silicon wafers. The method also teaches the use of capacitive microwave coupling for dielectric material such as glass and ceramics. The method further teaches the use of rapid and selective heating of heterostructure for bonding and sealing of mems and integrated circuits. The method and apparatus can provide ultra-high heating speed along with ultra-high heating temperatures for rapid thermal processing of semiconductors and other materials. It also allows the use of bonding materials with high melting temperature for strong bonding and sealing of mems and IC devices. The apparatus further provides for high interconnection density of integrated circuits as connections are made without the use of solder bumps.

  • Plant Material Drying Methods

    A method of drying fresh plant material wherein the fresh plant material containing a desired heat labile compound is exposed to microwave energy at an intensity and for a time sufficient to remove a majority of the water from the plant material without degrading a majority of the heat labile compound. The method is particularly suited to in-field drying of freshly harvested plant material to reduce the weight and volume of the plant material for savings transportation costs to an extraction facility while preserving at high levels the amount and activity of the desired heat labile compound.

  • OVEN CIRCULATING HEATED AIR

    An oven which runs on a 20 ampere single phase electrical service includes a cooking chamber comprising a top wall, a bottom wall, a first side wall and a second side wall, at least one microwave generator, at least one set of nozzles, tubes or apertures disposed above a food product disposed within the oven, at least one blower having an RPM in the range between about 3000 to about 4000 at 100 percent velocity, wherein the blower circulates at least a portion of gas from the nozzles, tubes or apertures into the cooking chamber substantially toward the food product and back to the nozzles, tubes or apertures, and a thermal energy source that heats the gas, wherein the heated gas at or near the food product disposed in the cooking chamber exhibits a flow rate of at least about 150 CFM.

  • MULTIPLE E-PROBE WAVEGUIDE POWER COMBINER/DIVIDER

    A power combiner/divider having a waveguide, a plurality of amplifiers disposed on a supporting structure, a plurality of probes, each one having a first end electrically coupled to an output of a corresponding one of the plurality of amplifiers and a second end projecting outwardly from the supporting structure and into the waveguide. The probes are disposed in a common region of the waveguide. The region has a common electric field maximum within the waveguide. A first portion of the probes proximate the sidewalls have lengths different from a second portion of the probes disposed in a region distal from the sidewalls of the waveguide. The waveguide is supported by the support structure. The power combiner is a monolithic microwave integrated circuit structure.

  • METHOD FOR PRE-TREATING PREFORMS AND BLOW MOLDING APPARATUS FOR PRE-TREATING AND BLOW MOLDING PREFORMS INTO CONTAINERS

    A method for pre-treating preforms (12) made of thermoplastic plastic, before they are shaped into containers (13) by means of a stretch blow molding process and filled with liquid. The preforms (12) are tempered and sterilized for the subsequent stretch blow molding process. Tempering of the preforms (12) is carried out by means of microwave radiation and by sterilization of the preforms (12) during the pre-treatment.

  • CONTAINER FOR DEPILATORY COMPOSITION

    The object of the invention is a compact container (10) with a double wall (14), intended to receive a depilatory composition (12) intended to be brought to the temperature of use by heating in a microwave oven, characterised in that it comprises a lid (16) provided with at least one access opening (20) to said depilatory composition (12), with the lid closed.

  • LINEAR-TYPE MICROWAVE-EXCITED PLASMA SOURCE USING A SLOTTED RECTANGULAR WAVEGUIDE AS THE PLASMA EXCITER

    A linear-type microwave-excited plasma source mainly comprises a reacting chamber, a rectangular waveguide and a linear biased slot in between. A linear quartz plate with an o-ring embedded in the biased slot is required so as to keep the reaction chamber in low pressure condition. Plasma will be excited in the reacting chamber by microwave powers radiating from the biased slot. A linear-type movable dielectric material can be disposed in the waveguide to control the radiation intensity of microwave, such that the length of the linear-type plasma source is able be extended without increasing input microwave powers and thus large-area low-cost plasma-processing applications can be implemented.

  • Vision-enabled household appliances

    The invention is generally related to the systems and methods through which household appliances can provide intuitive and enhanced interactivity through visual inputs. In particular, the disclosure presents methods relating to control of a household appliance, such as a microwave or a refrigerator, via recognition of visual indicia, such as graphics, text, and the like, using a visual sensor such as a camera.

  • RADIO FREQUENCY POWER TRANSMISSION SYSTEM

    A wireless power transmission system for use in a mobile asset comprising a host transmitter for providing at least one of a microwave or a lightwave energy signal, a receiver configured to receive said signal, a converter for converting said signal to a storable energy form, and a controller to control the transfer of storable energy from said converter to at least one energy storage device.

  • MICROWAVE TUBE WITH DEVICE FOR EXTRACTING IONS PRODUCED IN THE TUBE

    An electron tube includes: a microwave structure having an evacuated envelope including two ends, the microwave structure being at a reference potential, an electron gun including a cathode for providing a beam of electrons, along an axis, at one end of the evacuated envelope, an electron collector for gathering electrons of the beam at the other end of the evacuated envelope, and at least one high-voltage power supply for applying to the cathode a negative high-voltage potential with respect to the reference potential. The tube includes between the cathode and the microwave structure a device for extracting the positive ions including at least one electrode carried to a negative potential with respect to the reference potential so as to extract positive ions from the evacuated envelope, these positive ions being produced by the impacting of the electrons of the electron beam with molecules of residual gas in the evacuated envelope. The invention has application to microwave electron tubes, klystron TWT etc. using a cylindrical electron beam.

  • Microwave-Assisted Setting of Shaped Ceramic/Foam Bodies

    The invention relates to a method for the production of shaped foam bodies, comprising: provision of a composition having foam particles and binder; introduction of the composition into a space which is bounded on at least one side by a pressing surface; and exertion of pressure onto the composition by means of the pressing surface. The method further comprises irradiation of microwaves through the pressing surface into the composition, while pressure is being exerted onto the composition. The invention furthermore relates to a device for carrying out the method according to the invention, having: at least one pressing surface and a counterbearing surface lying opposite, between which a space extends which is adapted to receive a composition of foam particles and binder. The pressing surface and counterbearing surface adjoin the space directly. The device further comprises at least one stiff layer which locally or entirely is essentially transparent for microwaves and has a surface facing toward the space, which is connected to the pressing surface in such a way as to transmit force. The device also comprises a microwave radiator unit which is arranged on a side of the stiff layer remote from the space and is aligned relative to the space in order to irradiate microwaves into the space through the stiff layer. Lastly, the invention relates to a microwave radiator unit for the heat treatment of foam compositions. The microwave radiator unit comprises a multiplicity of microwave antennas which are arranged in a plane array and at least two of which are connected through a distributor device to a common microwave signal source, which feeds the at least two antennas.

  • Microwave Ground Plane Antenna Probe

    An ablation probe having a ground plane is disclosed. The disclosed probe includes an inner conductor coaxially disposed within an outer shield. One or more ground plane(s) oriented substantially transversely to a longitudinal axis of the probe are joined to the outer shield. One or more dielectric(s) may be disposed around the inner conductor or upon a surface of a ground plane. The probe may include a rigid or flexible catheter disposed around the outer shield to define a conduit therebetween to enable the delivery of pressurized fluid to an inflatable balloon disposed around a ground plane. A semicylindrical housing having a circumferential surface and a distal surface may be included. A proximal edge of the circumferential surface of the semicylindrical housing may be joined to a circumferential edge of a ground plane. An opening may be defined in the distal surface of the semicylindrical housing, through which the inner conductor may extend distally.

  • Reinforced High Strength Microwave Antenna

    High-strength microwave antenna assemblies and methods of use are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. Proximal and distal radiating portions of the antenna assembly are separated by a junction member. A reinforcing member is disposed within the junction member to increase structural rigidity.

  • WIRELESS MICROWAVE INTERFERER FOR DESTRUCTING, DISABLING, OR JAMMING A TRIGGER OF AN IMPROVISED EXPLOSIVE DEVICE

    A wireless microwave interferer for destructing, disabling, or jamming a trigger of an improvised explosive device. The interferer includes a power source interface, a control and monitoring panel, a waveform generator, a modulated HV power supply, at least one microwave generator, a waveguide to co-ax transformer and combiner, one of an ellipsoidal antenna and a spiral antenna, and an antenna adjustment mechanism. The power source interface interfaces with a power source. The waveform generator is connected to the modulated HV power supply and to the control and monitoring panel. The control and monitoring panel is connected to the power source interface, the modulated HV power supply, and the antenna adjustment mechanism. The modulated HV power supply is connected to the at least one microwave generator. The at least one microwave generator is connected to the waveguide to co-ax transformer and combiner. The waveguide to co-ax transformer and combiner is connected to the one of the ellipsoidal antenna and the spiral antenna. The one of the ellipsoidal antenna and the spiral antenna is connected to the antenna adjustment mechanism.

  • MICROWAVE HEATING APPARATUS WITH ROTATABLE ANTENNA AND METHOD THEREOF

    A microwave heating apparatus and a method for heating/browning a piece of food by means of microwaves are provided. The microwave heating apparatus comprises a cavity arranged to receive, in a substantially horizontal browning region, a piece of food to be browned. The microwave heating apparatus further comprises a microwave source for generating microwaves and a rotatable antenna arranged at the cavity bottom for supplying the generated microwaves. The antenna is configured to produce at least one radiating lobe pointing towards the browning region such that the intersection between the radiating lobe and the browning region forms a hot spot, thereby forming a ring-shaped heating pattern in the browning region under rotation of the antenna. The present invention is advantageous in that a microwave heating apparatus with an improved crisp function is provided.

  • MICROWAVE REACTIVATION SYSTEM FOR STANDARD AND EXPLOSION-PROOF DEHUMIDIFICATION

    The present invention relates to dehumidification equipment and more specifically to a microwave reactivation system and new method of reactivation/regeneration of the desiccant dehumidification system and desiccant rotor for use in conventional desiccants as well as the explosion-proof dehumidification system used in hazardous locations and or applications. The dehumidification system incorporates a desiccant rotor assembly which is located in the cabinet and the rotor rotatively mounted inside this cabinet. The desiccant rotor core is impregnated with a desiccant type material. Mechanical means are provided for rotating the desiccant rotor within the cabinet. The Microwave System and method of reactivation is designed to provide an indirect, safe and energy efficient source of heat and temperature rise required in the reactivation section of the desiccant unit for the release into atmosphere of the water vapors which are accumulated in the desiccant rotor. This microwave reactivation system and method is based on heat transfer produced from a heated fluid which is pumped through a closed loop coil assembly. This closed loop coil assembly is located and runs through both the isolated heating chamber of the microwave section and the reactivation/regeneration section in the dehumidification system. The airstream passing through the reactivation intake section comes in contact with the coil assembly and is heated to the desired temperature prior to reaching the desiccant rotor. The desiccant dehumidification system which is comprised of a desiccant rotor assembly and the method of dehumidifying the air enclosed within a specific space is also described in this documentation.

  • Adaptive method for system re-acquisition in power saving mode operation in a mobile wiMAX system

    Methods and apparatus for re-acquiring a WiMAX network after a relatively long power saving mode (e.g., sleep or idle mode) using a "pre-wakeup" scheme are provided. According to this pre-wakeup scheme, a mobile station (MS) may power up receiving circuitry to search for the current channel or, if unsuccessful, a neighbor channel. After a successful network search during sleep mode, the MS may return to sleep for the remainder of the sleep window until the circuitry is powered up a second time to wakeup and then listen for an expected message. By pre-waking up and searching before waking up for the expected message, the MS may counteract the effects of the potential error in the local oscillator frequency accumulated during the long sleep mode. In this manner, the message miss rate may be reduced, thereby saving power and extending the time in which the MS may operate between battery rechargings.

  • Multiple access communications cell phone (MAC cell phone)

    The MAC Cell Phone is an automated transparent programmable telecommunication multiple access call and high-speed digital data stream facilitator as a router device for use by a consumer as a facilitator for receiving or sending VoIP telephone calls, fax transmissions, Internet access, digital file sending; receiving; storage, and video streaming which via the means and function of the MAC Cell Phone, stores determined data transmission to facilitate user subscribership interconnected MAC Cell Phone feature and service completion from a plurality of service providers for group discount cost access for the service that is provided through the invention. Additionally, an intricate feature of the MAC Cell Phone is the ability to make all facilitation functions of the MAC Cell Phone securely available to the subscriber of the service for, from, or to all other digital electronic equipment in their home and office that could utilize the functions provided.

  • System and method for locating an unknown base station

    A system and method for estimating a location of an unknown Node B in a wireless communication system having a plurality of other nodes and a plurality of location measurement units. A first value may be determined based on a network timing characteristic for one of the nodes, and a second value may be determined based on a network measurement report characteristic from a user equipment ("UE"). An observed time difference of arrival ("OTDOA") hyperbola may then be calculated based on the first and second values, and a location of the unknown Node B as a function of the OTDOA hyperbola. Therefore, through the combination of a UE network measurement report characteristic and a downlink timing measurement from a location measurement unit, the location of an unknown Node B may be determined.

  • Method, system and apparatus for performing mobile internet protocol deregistering

    A method, a system and an apparatus for performing mobile Internet protocol deregistering, includes that the network element in the ASN to which the terminal attaches detects whether the MS terminates unconventionally, and sends the message with the MS identifier of the MS which terminates unconventionally to the ASN GW/DP. The ASN GW/DP instructs the ASN GW/FA to release the link resource with the MS and release the link resource with the HA proving service for the MS.

  • Microwave Spacers and Method of Use

    Disclosed is a microwave spacer for guiding and positioning microwave energy delivery devices during a surgical procedure. The microwave energy device spacer includes a body forming a plurality of device apertures defined therein, the plurality of device apertures including at least two lumens and at least one arcuate slot. The lumens are configured to receive an energy delivery device therethrough. The arcuate slot includes a length, a width and a radius of curvature and is configured to receive an additional energy delivery device therethrough.

  • SATELLITE NAVIGATION RECEIVERS WITH SELF-PROVIDED FUTURE EPHEMERIS AND CLOCK PREDICTIONS

    An improved extended ephemeris navigation receiver includes a fully autonomous satellite navigation receiver for receiving microwave transmissions from orbiting navigation system satellites, and able to demodulate navigation messages that include the ephemerides for those navigation system satellites. The improvements include a force model of the accelerations acting on a particular satellite vehicle, and are exclusive to the receiver. A single observation of the ephemeris for each SV is input and propagated days into the future by integrating each SV's orbital position with its corresponding force model. The fully autonomous satellite navigation receiver thereafter has available to it extended ephemeris predictions that can be used as substitutes when said navigation messages from the respective SV cannot otherwise be immediately obtained and demodulated.

  • Providing Sensory Feedback Indicating an Operating Mode of a Thermal Process Stream Device

    Technologies are described herein for providing sensory feedback to users of microwave oven or other thermal process stream device indicating operation in an interpretive language architecture mode. An indication is received through a device data entry mechanism that the interpretive language architecture mode of the device is to be initiated. Sensory feedback is provided indicating that the device is operating in the interpretive language architecture mode and that input data comprising a predetermined code for interpretation by the interpretive language architecture is expected. The sensory feedback may comprise flashing or illumination of specific keys on a keypad of the device data entry mechanism and may continue through entry of the input data comprising the predetermined code until completion of the resulting thermal process in the device.

  • METHOD AND APPARATUS FOR PRODUCING LIQUID HYDROCARBON FUELS FROM COAL

    A method of converting coal into a liquid hydrocarbon fuel utilizes a high pressure, high temperature reactor which operates upon a blend of micronized coal, a catalyst, and steam. Microwave power is directed into the reactor. The catalyst, preferably magnetite, will act as a heating media for the microwave power and the temperature of the reactor will rise to a level to efficiently convert the coal and steam into hydrogen and carbon monoxide.

  • MICROWAVE-ASSISTED PEPTIDE SYNTHESIS

    An instrument and method for accelerating the solid phase synthesis of peptides are disclosed. The method includes the steps of deprotecting a protected first amino acid linked to a solid phase resin by admixing the protected linked acid with a deprotecting solution in a microwave transparent vessel while irradiating the admixed acid and solution with microwaves, activating a second amino acid, coupling the second amino acid to the first acid while irradiating the composition in the same vessel with microwaves, and cleaving the linked peptide from the solid phase resin by admixing the linked peptide with a cleaving composition in the same vessel while irradiating the composition with microwaves.

  • METHOD AND APPARATUS FOR PRODUCING METAL BOND GRIND STONE

    A metal bond grind stone producing method in which electric power consumption is reduced is provided. In the metal bond grind stone producing method, a sintered metal bond grind stone is obtained by a sintering process of sintering a metal bond grind stone material that is a mixture of a metal binder powder and abrasive grains. In the sintering process, the metal bond grind stone material containing the metal binder powder is heated with microwaves to obtain the sintered metal bond grind stone. The sintering process may be a pressure sintering process of performing microwave heating while pressurizing the metal bond grind stone material.

  • FEMININE COOLING PAD

    A feminine cooling pad is configured for use in cooling a woman's vulva and/or adjacent region. The cooling pad may be configured for single use and be disposable so as to include a liquid permeable layer configured to be oriented toward a user's skin during use. A liquid absorbent layer is adjacent to the liquid permeable layer and configured to absorb bodily fluids or discharges during use. A cooling layer is adjacent to the liquid absorbent layer and configured to provide a cooling effect for a period of time of at least about 15 minutes when the cooling pad is placed against a user's skin. An adhesive layer is adjacent to the cooling layer and adheres the feminine cooling pad to a user's undergarment during use and maintains the cooling pad in a desired orientation relative to the user's body. A feminine heating pad may be provided by including a microwavable material that becomes warm or hot when placed in a microwave oven.

  • METHOD OF MICROWAVE COOKING OF FOOD AND IMPROVED PACKAGING MATERIAL FOR USE IN MICROWAVE OVENS

    A packaging for microwave cooking having a plastics material film (1, 2, 3) or sheet and including a discontinuous coating of metal particles (4) applied to said film or sheet, or a disposition of discrete metal particles included in said film or sheet, wherein the small discrete particles of metal do not form a continuous layer of metal particles and/or such that they do not act as a susceptor, and such as to enable microwave cooking without undesirable reactions (such as sparks or flames) of small or individual portions of foodstuffs, and/or without undesirable hot-spot reactions with food such as may otherwise produce such.

  • CONVENIENCE FOOD PRODUCT

    A convenience food product is described having a configuration optimized for rapid microwave heating and providing an integrated storage area for complementary consumables.

  • SINTERING OF METAL AND ALLOY POWDERS BY MICROWAVE/MILLIMETER-WAVE HEATING

    A method of sintering by: placing a compacted metal powder inside a cylindrically-shaped susceptor and in an inert atmosphere or a vacuum, and applyingmicrowave or millimeter-wave energy to the powder until the powder is sintered.

  • MULTI-RANGE RADAR SYSTEM

    A radar system operable to detect objects within multiple ranges using common components is provided. The radar system includes a transmitter antenna, a first and second microwave radiation source, and a receiver. The first and second microwave radiation sources both are transmitted through the transmitter antenna. The echoes are received by the same receiver. The first microwave radiation source is a frequency modulated wave form and the second microwave radiation source is an ultra-wide band wave form. A multiplexer selectively connects one of the first and second microwave radiation sources to the transmitter antenna.

  • METHOD FOR DETECTING A COVERED DIELECTRIC OBJECT

    The invention relates to a method for detecting a covered dielectric object, where a microwave signal that can be modified in frequency is generated at a particular bandwidth and transmitted in the direction of the covered dielectric object. The microwave signal reflected by the object is then obtained from the three-dimensional measurement result in a lateral, two-dimensional pattern, a highest signal amplitude and a second-highest signal amplitude within a particular time period before or after the received microwave signal is identified in a plurality of pattern points of the pattern. The object is detected if an accumulation of pattern points of the pattern is present, in which the difference in each case between the highest and the second highest signal amplitude of the received microwave signal is less than a defined threshold value.

  • MICROWAVE DIFFRACTION SYSTEM

    A microwave diffraction system includes two plates, a lattice model, a transmitter and a detector. The two plates are electrically conductive and configured in a parallel manner so as to form a planar waveguide. The lattice model includes a plurality of cylinders arranged in regular order and is placed between the two plates. The transmitter is arranged at an outside edge of the planar waveguide and configured for providing a microwave towards the lattice model. The detector is arranged at outside edge of the planar waveguide and configured for detecting the microwave reflected from the lattice model. The diffraction pattern obtained by the above-mentioned microwave diffraction system is similar to theoretical value.

  • METHODS AND APPARATUS FOR DRYING LOGS WITH MICROWAVES USING FEEDBACK AND FEED FORWARD CONTROL

    Methods and apparatus for microwave drying of green cellular ceramic bodies (logs) using feedback and feed forward control are disclosed. The methods include measuring an amount of dissipated microwave power and measuring temperatures of the logs and inputting this information into a drying model. The drying model accounts for at least a heat capacitance, a water content and a mass of the logs, and relates changes in the dissipated microwave power to changes in the log temperature. The changes in microwave power generated by the adjustable microwave source are thus based on the calculated dissipated power changes.

  • DEVICE FOR MICROWAVE HEATING OF A FOOD PRODUCT

    A container for use in a microwave oven includes an elongated base section including a sump. The sump includes a raised center section defining a channel along an outer periphery of the sump. A first wall extends upwardly from the elongated base section. An outwardly extending spillway is at a top of the first wall.

  • MICROWAVE DISPOSAL SYSTEM FOR HAZARDOUS SUBSTANCES

    A system and method for destruction of energetic compounds, medical wastes and unwanted pharmaceuticals using microwave energy. Waste materials are first mixed into a dilute water solution, slurry or emulsion. The dilute waste flows to a first microwave reactor containing silicon carbide. The silicon carbide absorbs the microwave energy, heats and vaporizes the liquid. The vapor flows to a second microwave reactor containing silicon carbide and an oxidation catalyst. Air is added and the waste portion of the vapor is oxidized to carbon dioxide. Water is recovered in a condenser and recycled. Carbon dioxide and remaining air is vented. Solid organic wastes such as contaminated disposable gloves and towels are gasified in a first microwave reactor with air and oxidized in the second microwave reactor.

  • MICROWAVE APPARATUS

    The present invention relates to a microwave apparatus, a method or use of the apparatus and a method of carrying out chemical reactions on a continuous basis with the apparatus, wherein the apparatus is particularly suitable for microwave-assisted organic synthesis.

  • MICROWAVE-ACCELERATED PLASMONICS

    The present invention relates to systems and methods using microwave accelerated surface plasmonics for the detection of target species, wherein the system has a metallic surface and the system is exposed to microwave energy for increasing detection time and/or the reaction kinetics of the target species and other interacting participants in the system and wherein plasmonic emissions from the metallic surface alone or coupled with emissions from a luminescing entity are detected.

  • MICROWAVE CHEMICAL REACTOR

    Microwave heating apparatus for chemical-physical processes comprising a microwave source, operatively connected to an end of an antenna at a connector. The antenna is put in a reaction container where it irradiates with microwaves a reacting material. The antenna is coated with a sheath that avoids a direct contact with the reacting material, or is put into in a housing executed in the container. The housing, made of a material transparent to microwaves, can cross the reaction container for a part thereof, or for all its width. The arrangement of the antenna in the reacting material provides a quick and effective heating. Furthermore, it is possible to increase considerably the selectivity, the control and the efficiency of a chemical-physical processes to which the heating technique above described is applied. This allows also to provide a considerable energy saving with respect to apparatus of prior art.

  • Microwave Spacers and Methods of Use

    Disclosed is a spacer, configured to position microwave energy delivery devices, including a housing, with a housing body and a compression body, and at least one compression mechanism. The housing body forms a housing body cavity and a plurality of housing device apertures. The compression body forms a plurality of compression body apertures that each correspond to a housing device aperture. The compression body slideably engages the housing body cavity and at least a portion of the compression body is positioned within the compression body cavity. A compression mechanism is positioned between the housing body and the compression body and configured to provide a biasing force between the housing body and the compression body. In a first position the housing device apertures are misaligned with the compression body apertures and in the second position the housing apertures are aligned with the compression body apertures forming a plurality of aligned apertures.

  • USING VACUUM ULTRA-VIOLET (VUV) DATA IN MICROWAVE SOURCES

    The invention provides an apparatus and methods for creating gate structures on a substrate in real-time using Vacuum Ultra-Violet (VUV) data and Electron Energy Distribution Function (EEDf) data and associated (VUV/EEDf)-related procedures in (VUV/EEDf) etch systems. The (VUV/EEDf)-related procedures can include multi-layer-multi-step processing sequences and (VUV/EEDf)-related models that can include Multi-Input/Multi-Output (MIMO) models.

  • Radio Frequency (RF) Microwave Components and Subsystems Using Loaded Ridge Waveguide

    A waveguide having a non-conductive material with a high permeability (.mu., .mu..sub.r for relative permeability) and/or a high permittivity (.di-elect cons., .di-elect cons..sub.r for relative permittivity) positioned within a housing. When compared to a hollow waveguide, the waveguide of this invention, reduces waveguide dimensions by .varies. 1 .mu. r * r . ##EQU00001## The waveguide of this invention further includes ridges which further reduce the size and increases the usable frequency bandwidth.

  • MICROWAVE SEALING DEVICE OF AN OPENING FOR A ROTATING SHAFT

    The present invention relates to a microwave sealing device of an opening for a rotating shaft (26) or axle. The sealing device (10; 30; 50) is provided for enclosing a section of the shaft (26) or axle. The sealing device (10; 30; 50) includes a front panel (12; 32; 52) and a basis part (14; 34; 54). The front panel (12; 32; 52) is formed as a plane disk and comprises a central hole (16; 36; 56) in its centre and a plurality of cuts (20; 40; 58, 60). The basis part (14; 34; 54) is formed as a hollow part with a peripheral wall and two opposing face sides. At least one of the two opposing face sides of the basis part (14; 34; 54) is open. The basis part (14; 34; 54) comprises a plurality of cuts (22; 42; 62) in the peripheral wall. The front panel (12; 32; 52) is attached at the open face side or at one of the two open face sides, respectively, of the basis part (14; 34; 54).

  • MICROWAVE SYSTEM AND METHOD FOR CONTROLLING THE STERILIZATION AND INFESTATION OF CROP SOILS

    The method and the system are applicable in farming activities, pest control, industry, agriculture, forestry, etc. for controlling insects and other plant pests from crops. The system performing the method comprises a source of lethal impact which is a microwave generator with a microwave guiding element directed so as to infested soil. The microwave energy is transferred from a microwave generator into the pests located in the desired soil location, killing the plant insects and pests.

  • MICROWAVE PLASMA SOURCE AND PLASMA PROCESSING APPARATUS

    There are provided a microwave plasma source and a plasma processing apparatus capable of improving uniformity of a plasma density distribution within a processing chamber by controlling positions of nodes and antinodes of a standing wave of microwave within the processing chamber not to be fixed. The microwave plasma source 2 includes a microwave supply unit 40. The microwave supply unit 40 includes multiple microwave introducing devices 43 each introducing microwave into the processing chamber; and multiple phase controllers 46 for adjusting phases of the microwaves inputted to the microwave introducing devices 43. Here, the phases of the microwaves inputted to the microwave introducing devices 43 are adjusted by fixing an input phase of the microwave inputted to one of two adjacent microwave introducing devices 43 while varying an input phase of the microwave inputted to the other microwave introducing device 43 according to a periodic waveform.

  • MICROWAVE PROCESSING OF FEEDSTOCK, SUCH AS EXFOLIATING VERMICULITE AND OTHER MINERALS, AND TREATING CONTAMINATED MATERIALS

    Ways of applying microwaves to feedstock to be processed are disclosed. One embodiment relates to heating inter-layer water in vermiculite to expand the vermiculite. Another embodiment relates to heating water in oil-contaminated materials and waste products, such as drilling cuttings, contaminated soils and certain types of animal by-products, to drive out oil. In some embodiments a microwave tunnel applicator has the microwaves applied from beneath the feedstock.

  • Antenna Array for Transmission/Reception Device for Signals with a Wavelength of the Microwave, Millimeter or Terahertz Type

    Transmission/reception device for signals having a wavelength of the microwaves, millimeter or terahertz type, comprising an antenna array. The antenna array comprises a first group of first omni-directional antennas and a second group of second directional antennas disposed around the first group of antennas.

  • Systems and Methods for Susceptor Assisted Microwave Annealing

    Systems and methods for microwave annealing are disclosed. In some embodiments, the system may comprise a microwave emitter configured to emit a microwave at a single frequency during an anneal time. In some embodiments, the system may further comprise an anneal unit to be annealed, the anneal unit having a top side, a bottom side, and one or more edge sides. In some embodiments, the system may further comprise a susceptor configured to absorb microwave energy, where the susceptor is adjacent to the edge side and at the bottom side of the anneal unit.

  • TUNABLE PHOTONIC MICROWAVE OR RADIO FREQUENCY RECEIVERS BASED ON ELECTRO-OPTIC OPTICAL WHISPERING GALLERY MODE RESONATORS

    Photonic devices and techniques based on tunable single sideband (SSB) modulation in whispering gallery mode resonators formed of electro-optic materials to construct RF or microwave receivers.

  • METHODS AND COMPOSITIONS FOR DIRECTED MICROWAVE CHEMISTRY

    The present invention concerns a novel means by which chemical preparations can be made. Reactions can be accelerated on special cartridges using microwave energy. The chips contain materials that efficiently absorb microwave energy causing chemical reaction rate increases. The invention is important in many chemical transformations including those used in protein chemistry, in nucleic acid chemistry, in analytical chemistry, and in the polymerase chain reaction.

  • EFFICIENT HEAT EXCHANGE SYSTEM FOR STORING ENERGY

    The efficient heat exchange system provides a rapidly rechargeable thermal energy storage bank operably connected to a heat engine capable of use in an electric power generation facility or in a vehicle. Microwave energy is supplied to the system via a network of waveguides. The thermal energy storage bank has a slurry in a heat exchanger capable of sustaining operation of the engine without requiring the microwave source. The slurry provides a mixture of powdered stainless steel and silicone oils functioning as the working fluid in the hot side of the heat exchanger. The slurry may be heated by plugging the system into standard AC power for a predetermined microwave heat charging duration. A closed, triple-expansion, reciprocating Rankine cycle engine capable of operating under computer control via a high pressure micro-atomized steam working medium is provided to propel the vehicle.

  • Photovoltaic Device Structure with Primer Layer

    Device structure that facilitates high rate plasma deposition of thin film photovoltaic materials at microwave frequencies. The device structure includes a primer layer that shields the substrate and underlying layers of the device structure during deposition of layers requiring aggressive, highly reactive deposition conditions. The primer layer prevents or inhibits etching or other modification of the substrate or underlying layers by highly reactive deposition conditions. The primer layer also reduces contamination of subsequent layers of the device structure by preventing or inhibiting release of elements from the substrate or underlying layers into the deposition environment. The presence of the primer layer extends the range of deposition conditions available for forming photovoltaic or semiconducting materials without compromising performance. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors from fluorinated precursors in a microwave plasma process. The product materials exhibit high carrier mobility, high photovoltaic conversion efficiency, low porosity, little or no Staebler-Wronski degradation, and low concentrations of electronic and chemical defects.

  • Method and Apparatus for Microwave Depolymerization of Hydrocarbon Feedstocks

    A method and apparatus is provided for the continuous microwave depolymerization of high molecular weight organic feedstock material, such as waste plastics and includes intermittent or continuous feeding of the processing material on the surface or into the bulk of the sensitized hot bed located under microwave irradiation. As a result of the interaction of electromagnetic field with processed materials, sensitizer is heated by microwave energy and feedstock material undergoes the depolymerization reactions. The reaction zone can be localized on the surface of the hot bed or distributed in the bulk of the reaction mass depending on the agitation conditions of the reaction mass, such as stirring, or other agitation means, for example by re-circulated gas. Products of the reactions are vaporized and transported to the collection system, which may include a combination of a scrubber, a condenser and a settler.

  • METHOD FOR RECORDING TEMPERATURE PROFILES IN FOOD PACKAGES DURING MICROWAVE HEATING USING A METALLIC DATA LOGGER

    The time/temperature history of a food tray or pouch heated by microwave energy applied through a waveguide can be accurately assessed on positioning and stabilizing a shielded data logger in an orientation where the base of the data logger is located generally close to zero depth (near the side wall) and the tip projects to the cold spot in the tray or pouch. A frame can be used to assure stability of orientation in a pouch while bracing can be used to assure stability in a tray. The properly configured food tray or pouch can serve as an accurate witness device for food items being processed in a similar manner under microwave heating for, e.g., sterilization or pasteurization.

  • METHOD FOR RECORDING TEMPERATURE PROFILES IN FOOD PACKAGES DURING MICROWAVE HEATING USING A METALLIC DATA LOGGER

    The time/temperature history of a food tray or pouch heated by microwave energy applied through a waveguide can be accurately assessed on positioning and stabilizing a shielded data logger in an orientation where the base of the data logger is located generally close to zero depth (near the side wall) and the tip projects to the cold spot in the tray or pouch. A frame can be used to assure stability of orientation in a pouch while bracing can be used to assure stability in a tray. The properly configured food tray or pouch can serve as an accurate witness device for food items being processed in a similar manner under microwave heating for, e.g., sterilization or pasteurization.

  • MULTICOLOR MICROWAVE-ACCELERATED METAL-ENHANCED FLUORESCENCE (M-MAMEF)

    The present invention relates to the use of multiple different light emitting molecules that emit different and detectable emission signals to provide systems and methods to detect different target products in a single assay sample, wherein the different light emitting molecules are positioned an optimal distance from metallic particles thereby enhancing emissions. Preferably, the systems and methods further comprise use of either microwave or sonic energy to increase binding reactions, timing of such reactions within the assay sample and reduce background non-specific biological absorption

  • LAMP

    A band pass filter comprises an air filled aluminium chamber, having a lid and a cuboid resonant cavity having a central iris. At opposite end nodes of the cavity, perfect electric conductors (PECs) are provided. One is connected to a feed wire from an input at one end of the cavity. The other PEC is connected via a further feed wire to a radiator in a fabrication of solid-dielectric, lucent material. Threaded tuning projections opposite the PECs and in the iris are provided, whereby the pass band and the transmission characteristics of the filter in the pass band can be tuned to match the input impedance of the band pass filter and the wave guide to the output impedance of a microwave drive circuit (not shown). Typically the impedance will be 50.OMEGA..

  • WIDEBAND ACTIVE QUASI-CIRCULATOR

    Aspects describe a wideband active quasi-circulator that has the advantages of small size, lightweight, and compatibility with monolithic microwave integrated circuit (MMIC) technology. An active quasi-circulator is provided that comprises both a power amplifier and a low noise amplifier. The active quasi-circulator can operate over a wide frequency range with isolation or substantial isolation between a power amplifier and a low noise amplifier that is tunable with isolation or substantial isolation at any frequency within the wide frequency range. The provided quasi-circulator is suitable for use in mobile units in multi-band radio frequency communication systems, as well as in other configurations.

  • METHOD OF AND APPARATUS FOR IN-SITU MEASUREMENT OF SOOT BY ELECTRON SPIN RESONANCE (ESR) SPECTROMETRY

    An instrument and method using electron spin resonance spectrometry for measuring the concentration of airborne soot particles, and the like, that includes continuously passing a sample of exhaust gas through a resonating RF microwave cavity resonator during the application therethrough of a uniform slowly varying uniform magnetic field that is rapidly modulated and measuring the resulting phase modulation or amplitude modulation thereof to derive an electron spin resonance signal that directly senses the concentration of carbon free radicals produced as a result of inefficient combustion of hydrocarbons during operation of the vehicle or boiler. A further invention is the use of this signal for feedback control of the engine or boiler operating parameters to minimize or substantially eliminate particulate matter emissions.

  • METHOD FOR RECORDING TEMPERATURE PROFILES IN FOOD PACKAGES DURING MICROWAVE HEATING USING A METALLIC DATA LOGGER

    The time/temperature history of a food tray or pouch heated by microwave energy applied through a waveguide can be accurately assessed on positioning and stabilizing a shielded data logger in an orientation where the base of the data logger is located generally close to zero depth (near the side wall) and the tip projects to the cold spot in the tray or pouch. A frame can be used to assure stability of orientation in a pouch while bracing can be used to assure stability in a tray. The properly configured food tray or pouch can serve as an accurate witness device for food items being processed in a similar manner under microwave heating for, e.g., sterilization or pasteurization.

  • MULTICOLOR MICROWAVE-ACCELERATED METAL-ENHANCED FLUORESCENCE (M-MAMEF)

    The present invention relates to the use of multiple different light emitting molecules that emit different and detectable emission signals to provide systems and methods to detect different target products in a single assay sample, wherein the different light emitting molecules are positioned an optimal distance from metallic particles thereby enhancing emissions. Preferably, the systems and methods further comprise use of either microwave or sonic energy to increase binding reactions, timing of such reactions within the assay sample and reduce background non-specific biological absorption.

  • Method of Crystallizing Amorphous Silicon Films by Microwave Irradiation

    A method is developed to crystallize amorphous silicon (a-Si) thin films, in cold environment, by combining microwave-absorbing materials (MAM) and microwave irradiation. The MAM is set on top or around of the a-Si thin film. MAM composes of dielectric, magnetic, semiconductor, ferroelectric and carbonaceous material oxides, carbides, nitrides and borides, which will absorb and concentrate electric or magnetic field of the microwave. The microwave frequency is selected from 1 to 50 GHz, at a power density not less than 5 W/cm.sup.2. Temperature rise of the MAM is monitored and controlled by an optical pyrometer to be less than 600.degree. C., and better be within 400-500.degree. C. The application of MAM at patterned local areas leads to localized heating and crystallization of a-Si film right at the patterns to facilitate manufacture of semiconductor devices.

  • CoFe/Ni Multilayer Film with Perpendicular Anisotropy for Microwave Assisted Magnetic Recording

    A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2).sub.X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2).sub.X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2).sub.Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.

  • CoFe/Ni Multilayer Film with Perpendicular Anisotropy for Microwave Assisted Magnetic Recording

    A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2).sub.X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2).sub.X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2).sub.Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.

  • DUAL REVERSE MICROWAVE ASSISTED MAGNETIC RECORDING (MAMR) AND SYSTEMS THEREOF

    In one embodiment, a magnetic head includes a main magnetic pole, a first MAMR element positioned above and wider than the main magnetic pole that is positioned to extend beyond sides of the main magnetic pole in a track width direction, a spin-rectifying-current-pinned-magnetic layer, a magnetic interlayer, a FGL, a magnetic-zone-control layer, and a second MAMR element that is wider than the main magnetic pole and is positioned to extend beyond sides of the main magnetic pole in the track width direction positioned above the first MAMR element, and a trailing shield positioned above the second MAMR element, wherein the main magnetic pole is adapted for producing a high-frequency magnetic field comprising oscillating microwaves, wherein during a writing operation, current is applied to the first and second MAMR elements to produce magnetic fields which oppose bit-switching in the magnetic medium to avoid adjacent track bit reversal.

  • Microwave reference block assembly

    A test waveguide (33) for evaluating the performance of microwave probe assemblies (1, 13) and their associated analysis equipment is mounted on a stand (56). The test waveguide (33) includes geometry that is similar to that found on the test cell assembly (2) used during commercial production activities. The test waveguide (33) includes an unsealed interior space (41) that remains accessible while the probe assemblies (1, 13) are fastened to the test waveguide. One or more reference blocks (59) are formed having known characteristics that permit calibration and evaluation of the probe assemblies and their associated analysis equipment. Each reference block (59) is manually inserted into the unsealed interior space (41) within the test waveguide (33) and the probe assemblies (1, 13) are activated to permit immediate evaluation of the accuracy of the probes and associated equipment

  • MICROWAVE AND RF ABLATION SYSTEM AND RELATED METHOD FOR DYNAMIC IMPEDANCE MATCHING

    An electrosurgical system and method for performing electrosurgery is disclosed. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The electrosurgical system includes an electrosurgical instrument, such as an electrosurgical antenna, knife, forceps, suction coagulator, or vessel sealer. The disclosed system includes an impedance sensor, a controller, dynamic impedance matching network, and an electrosurgical energy generator. The dynamic impedance matching network includes a PIN diode switching array configured to selectively activate a plurality of reactive elements. The disclosed arrangement of reactive elements provides real-time impedance correction over a wide range of impedance mismatch conditions.

  • MICROWAVE AND RF ABLATION SYSTEM AND RELATED METHOD FOR DYNAMIC IMPEDANCE MATCHING

    An electrosurgical system and method for performing electrosurgery is disclosed. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The electrosurgical system includes an electrosurgical instrument, such as an electrosurgical antenna, knife, forceps, suction coagulator, or vessel sealer. The disclosed system includes an impedance sensor, a controller, dynamic impedance matching network, and an electrosurgical energy generator. The dynamic impedance matching network includes a PIN diode switching array configured to selectively activate a plurality of reactive elements. The disclosed arrangement of reactive elements provides real-time impedance correction over a wide range of impedance mismatch conditions.

  • MICROWAVE AND RF ABLATION SYSTEM AND RELATED METHOD FOR DYNAMIC IMPEDANCE MATCHING

    An electrosurgical system and method for performing electrosurgery is disclosed. The electrosurgical system includes an electrosurgical generator adapted to supply electrosurgical energy to tissue. The electrosurgical system includes an electrosurgical instrument, such as an electrosurgical antenna, knife, forceps, suction coagulator, or vessel sealer. The disclosed system includes an impedance sensor, a controller, dynamic impedance matching network, and an electrosurgical energy generator. The dynamic impedance matching network includes a PIN diode switching array configured to selectively activate a plurality of reactive elements. The disclosed arrangement of reactive elements provides real-time impedance correction over a wide range of impedance mismatch conditions.

  • SYSTEM AND METHOD OF MATCHING IMPEDANCES OF AN ELECTROSURGICAL GENERATOR AND/OR A MICROWAVE GENERATOR

    A system for performing a surgical procedure includes a source of energy, a surgical instrument, and an impedance matching network. The source of energy is an electrosurgical generator or a microwave generator. The surgical instrument is coupled to the source of energy and receives the energy therefrom. The surgical instrument is adapted to treat tissue with the energy. The impedance matching network is interposed along a path of the energy and matches an input impedance of the source of energy to an output impedance (or thereabouts).

  • LOW TEMPERATURE METHODS AND APPARATUS FOR MICROWAVE CRYSTAL REGROWTH

    Semiconductor devices and methods for making such devices are described. The semiconductor devices contain an epitaxial layer made by providing a semiconductor substrate containing an upper surface with a single-crystal structure; forming a layer on the upper surface of the substrate, wherein the layer comprises substantially the same material as the semiconductor substrate and comprises an amorphous or polycrystalline structure; and heating the layer using low temperature microwaves to change the amorphous structure to a single-crystal structure. The epitaxial layer can also be made by providing the semiconductor substrate with an upper surface of a single-crystal material and then forming an epitaxial layer on the substrate upper surface using microwaves at a wafer temperature less than about 550.degree. C. In-situ or implanted dopants in the epitaxial layer can be activated using the same, or separate, low temperature microwave processing. Other embodiments are described.

  • LOW TEMPERATURE METHODS AND APPARATUS FOR MICROWAVE CRYSTAL REGROWTH

    Semiconductor devices and methods for making such devices are described. The semiconductor devices contain an epitaxial layer made by providing a semiconductor substrate containing an upper surface with a single-crystal structure; forming a layer on the upper surface of the substrate, wherein the layer comprises substantially the same material as the semiconductor substrate and comprises an amorphous or polycrystalline structure; and heating the layer using low temperature microwaves to change the amorphous structure to a single-crystal structure. The epitaxial layer can also be made by providing the semiconductor substrate with an upper surface of a single-crystal material and then forming an epitaxial layer on the substrate upper surface using microwaves at a wafer temperature less than about 550.degree. C. In-situ or implanted dopants in the epitaxial layer can be activated using the same, or separate, low temperature microwave processing. Other embodiments are described.

  • SINGLE CRYSTAL U-MOS GATES USING MICROWAVE CRYSTAL REGROWTH

    Semiconductor devices and methods for making such devices are described. The UMOS semiconductor devices contain single-crystal gates that have been re-grown or formed at low temperature using microwaves. The devices can be formed by providing a semiconductor substrate, forming a trench in the substrate, forming an insulating layer in the trench, depositing a pre-gate layer on the insulating layer, the pre-gate layer comprising a conductive and/or semiconductive material (Si or SiGe) with a non-single crystal structure, contacting the pre-gate layer with a seed layer with a single-crystal structure, and heating the pre-gate layer using microwaves at low temperatures to recrystallize the non-single crystal structure into a single-crystal structure. These processes can improve the resistance and mobility of the gate either as a single crystal structure, optionally with a silicide contact above the source-well junction, enabling a higher switching speed UMOS device. Other embodiments are described.

  • RESONATED BYPASS CAPACITOR FOR ENHANCED PERFORMANCE OF A MICROWAVE CIRCUIT

    The present invention relates to microwave circuits, and more particularly to bypass circuits for bias connections. The bypass circuit comprises a capacitor in series with an inductor, the series combination being connected between the bias conductor and ground. This series combination provides low return loss at the operating frequency. A de-queueing circuit may be included in the bypass circuit to provide loss at other frequencies.

  • METAL-ASSISTED AND MICROWAVE-ACCELERATED EVAPORATIVE CRYSTALLIZATION

    The present invention relates to methods for rapid crystallization of amino acids, drug molecules, proteins and DNA/peptides. One method for rapid crystallization of functional group-containing molecules selected from the group consisting of amino acids, drug molecules, proteins and DNA/peptides includes (A) providing at least one metal or metal oxide in particulate or thin film form to provide (a) selective nucleation sites for crystallization of the functional group-containing molecules due to interactions of their functional groups and metal surfaces or engineered metal surfaces and (b) a microwave-transparent medium to create a thermal gradient between the metal surfaces or engineered metal surfaces and a warmer solution containing functional group-containing molecules to be crystallized, and (B) conducting microwave heating to cause the functional group-containing molecules to be crystallized.

  • MICROWAVE ACCELERATED ASSAYS

    The present invention provides for increasing fluorescence detection in surface assay systems while increasing kinetics of a bioreaction therein by providing low-power microwaves to irradiate metallic materials within the system in an amount sufficient to increase heat thereby affecting the kinetics of a bioreaction therein.

  • MICROWAVE FILTER AIR PURIFICATION SYSTEMS, METHODS OF USE, AND METHODS OF DISINFECTION AND DECONTAMINATION

    Embodiments of the present disclosure relate to microwave filter air purification systems, methods of using the microwave filter air purification systems, microwave absorbing filter packs, methods of degrading a contaminant, and the like.

  • MICROWAVE PLASMA REACTORS

    New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.

  • Plasma Deposition of Amorphous Semiconductors at Microwave Frequencies

    Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows that couple microwave energy to deposition species. The apparatus includes a microwave applicator with one or more conduits that carry deposition species. The applicator transfers microwave energy to the deposition species to energize them to a reactive state. The conduits physically isolate deposition species that would react or otherwise combine to form a thin film material at the point of microwave power transfer and deliver the microwave-excited species to a deposition chamber. Supplemental material streams may be delivered to the deposition chamber without passing through the microwave applicator and may combine with deposition species exiting the conduits to form a thin film material. Precursors for the microwave-excited deposition species include fluorinated forms of silicon. Precursors for supplemental material streams include hydrogenated forms of silicon.

  • MICROWAVE CAVITY WITH DIELECTRIC REGION AND METHOD THEREOF

    A method and apparatus for obtaining dielectric constant and other measurements of a sample, comprising an open cavity resonator; a microwave energy generator for creating a resonating microwave in the open cavity resonator; a predetermined dielectric material having a high dielectric constant in the range of 2 to 100,000 substantially filling the region in which a microwave resonates; the dielectric material adapted to receive a sample for measurement of the dielectric properties of the sample; whereby during operation the resonating microwave beam is substantially immersed in the predetermined dielectric material such that the effective electrical spot size and beam cross-section along the cylindrical axis of the resonating microwave is reduced as a function of the inverse of the square root of the predetermined dielectric material dielectric constant. The dielectric constant or loss tangent of the sample may be determined based upon the change in the cavity's resonant frequency modes.

  • PRODUCTION OF GRAPHENE AND NANOPARTICLE CATALYSTS SUPPORTED ON GRAPHENE USING MICROWAVE RADIATION

    Microwave irradiation is used to synthesize graphene and metallic nanocatalysts supported on graphene either by solid or solution phase. In solid phase methods, no solvents or additional reducing agents are required so the methods are "environmentally friendly" and economical, and the graphene and nanocatalysts are substantially free of residual contaminants. Recyclable, high efficiency Pd nanocatylysts are prepared by these methods.

  • Microwave Cooking Packages and Methods of Making Thereof

    A package with self-forming insulating walls includes a tray for supporting a food item, a flap joined to the tray along a fold line, and an insulating microwave material overlying at least a portion of the tray and at least a portion of the flap. The insulating microwave material may be joined to the flap. The insulating microwave material may include a microwave energy interactive material supported on a first polymer film layer, a moisture-containing layer joined to the microwave energy interactive material, and a second polymer film layer joined to the moisture-containing layer in a predetermined pattern, thereby defining a plurality of expandable cells between the moisture-containing layer and the second polymer film layer

  • Microwave Module

    The present application relates to a microwave module comprising a printed circuit board, a first housing part, a second housing part, and a diplexer. It is specifically proposed that the first and second housing parts are adapted to act as a shielding cover, and that the diplexer and its filter are an integrated part in the module and are made out of the shielding cover and the printed circuit board.

  • FLUORESCENCE MICROSCOPE IN MICROWAVE CAVITY

    The present invention relates to an optical imaging system communicatively connected to a microwave energy producing source wherein the combination provides for increases in chemical reaction times and the ability to monitor the reactions in real time with sufficient resolution to view the location of intracellular components labeled with luminescent molecules as well as interaction with other biomolecules and responses to localized environmental variables in living cells and tissues during the application of a microwave field.

  • MICROWAVE OVEN CAVITY AND MICROWAVE OVEN

    The present application in particular is directed to a microwave oven cavity (1). In order to obtain uniform heating and excellent heating efficiency, at least one inner wall (4) comprises at least one Fresnel reflective element (7) adapted to reflect microwaves coupled into the cavity (1) from a microwave source (5).

  • MICROWAVE-POWERED REACTOR AND METHOD FOR IN SITU FORMING IMPLANTS

    The present disclosure relates to an apparatus and process for forming medical devices from an injectable composition. The apparatus includes a supply assembly, a mixing assembly, and at least one source of microwave energy. The supply assembly is configured to maintain and selectively dispense a first precursor functionalized with a first reactive member and a second precursor functionalized with a second reactive member. The mixing assembly is configured to mix the first and second precursors within a mixing cavity defined therein. The microwave energy source is configured and adapted to irradiate the mixed first and second precursors within the mixing cavity.

  • METHOD AND APPARATUS FOR MICROWAVE DEPOLYMERIZATION OF HYDROCARBON FEEDSTOCKS

    A method and apparatus is provided for the continuous microwave depolymerization of high molecular weight organic feedstock material, such as waste plastics and includes intermittent or continuous feeding of the processing material on the surface or into the bulk of the sensitized hot bed located under microwave irradiation. As a result of the interaction of electromagnetic field with processed materials, sensitizer is heated by microwave energy and feedstock material undergoes the depolymerization reactions. The reaction zone can be localized on the surface of the hot bed or distributed in the bulk of the reaction mass depending on the agitation conditions of the reaction mass, such as stirring, or other agitation means, for example by re-circulated gas. Products of the reactions are vaporized and transported to the collection system, which may include a combination of a scrubber, a condenser and a settler.

  • Systems and Methods for Creating an Effect Using Microwave Energy to Specified Tissue

    Systems, methods and devices for creating an effect using microwave energy to specified tissue are disclosed. A system for the application of microwave energy to a tissue includes a signal generator adapted to generate a microwave signal having predetermined characteristics, an applicator connected to the generator and adapted to apply microwave energy to tissue. The applicator includes one or more microwave antennas and a tissue interface, a vacuum source connected to the tissue interface, a cooling source connected to the tissue interface, and a controller adapted to control the signal generator, the vacuum source, and the coolant source. The tissue includes a first layer and a second layer, the second layer below the first layer. The controller is configured so that the system delivers energy such that a peak power loss density profile is created in the second layer.

  • CONTROLLED PRESSURE RELEASE VESSEL FOR MICROWAVE ASSISTED CHEMISTRY

    A controlled release and self-resealing vessel assembly for high pressure microwave assisted chemistry is disclosed. The vessel assembly includes a microwave-transparent, heat expandable reaction vessel having at least two cylindrical portions axially adjacent one another, with one of the portions having a diameter larger than the diameter of the other portion. A transition portion is between the two cylindrical portions, the vessel mouth is in the larger-diameter portion, and a cylindrical retaining sleeve surrounds the vessel.

  • Detection of Carbon Nanotubes by Microwave-Induced Heating

    The present invention includes a method, systems and devices for the detection of carbon nanotubes in biological samples by providing a sample suspected of having one or more carbon nanotubes; irradiating the sample with a microwave radiation, wherein the carbon nanotubes absorb the microwave radiation; and detecting and measuring the one or more thermal emissions from the carbon nanotubes.

  • Dynamic Terahertz Switching Device Comprising Sub-wavelength Corrugated Waveguides and Cavity that Utilizes Resonance and Absorption for Attaining On and Off states

    A terahertz (THz) switch consisting of perfect conductor metamaterials is discussed in this invention. Specifically, we have built a THz logic block by combining two double-sided corrugated waveguides capable of slowing down the electromagnetic waves in the THz regime with a sub-wavelength cavity, having one or more grooves with shorter height than the grooves of the periodic corrugated waveguide. This new type of THz structure is called as the waveguide-cavity-waveguide (WCW). The new invention is based on our mathematical modeling and experimentation that confirms a strong electromagnetic field accumulation inside the tiny cavity which can confine EM field for a long time within a very small effective volume (V.sub.eff) to provide high quality (Q) factor. Therefore, an efficient THz switch can be designed to achieve ON-OFF switching functionality by modulating the refractive index n or extinction coefficient .alpha. inside the switching junction. The dimensions of the periodic structure and cavity can be optimized to apply the invention to slow-EM wave devices working at other frequencies in the EM spectrum including the microwave and outside the THz domain which is generally accepted as from 0.3 THz to 3 THz.

  • MICROWAVE DEVICE AND FLOW TUBE USED THEREIN

    The present invention relates to a microwave device in which a single-mode cavity resonator is used and uniform and efficient treatment is achieved by increasing a flow rate of a liquid to be treated. The microwave device according to an aspect of the present invention includes a single-mode cavity resonator having an irradiation chamber as a quadrangular prism cavity or a cylindrical cavity, a flow tube installed in the irradiation chamber whose axis line is substantially aligned in a direction of an electric field generated in the irradiation chamber, and an obstacle having a different dielectric constant from the dielectric constant of a liquid to be treated flowing through the flow tube and contained in the flow tube to disturb a flow of the liquid to be treated.

  • MICROWAVE ABLATION CATHETER AND METHOD OF UTILIZING THE SAME

    A microwave ablation system configured for use in luminal network is provided. The microwave ablation system includes a microwave energy source and a tool for treating tissue. An extended working channel is configured to provide passage for the tool. A locatable guide, translatable through the extended working channel, is configured to navigate the extended working channel adjacent a target.

  • MICROWAVE POPCORN BAG

    A microwaveable popcorn container may be fashioned from glassine or similar materials to provide a susceptor-free, biodegradable, and/or compostable container for cooking microwave popcorn. The material of the container may be translucent in order to advantageously permit inspection of contents during cooking, as well as evaluation of the completeness of kernel popping after microwaving.

  • MICROWAVE TM MODE RESONATOR AND AN ELECTRICAL FILTER INCLUDING SUCH A RESONATOR

    A microwave TM mode resonator includes a resonator cavity defined by an electrically conducting cavity wall having first and second spaced apart end faces and a side wall extending therebetween. The resonator further includes a resonator body within the cavity extending along its length between the first and second end faces, wherein a portion of the length of the resonator body is a dielectric and a further portion of the length is a metal.

  • ELECTRODE COOLING SYSTEM IN A MULTI-ELECTRODE MICROWAVE PLASMA EXCITATION SOURCE

    The excitation source consists of at least three identical electrodes arranged symmetrically in relation to the axis of the central tube, which supplies an analytical sample, and electrode cooling agent supply and removal systems. The electrodes are mounted in an electrically isolated metal housing so that the electrode tops are placed at the central tube outlet, and their ends are shorted in the power supply point with the microwave connections embedded in the housing on the extension of the electrode longitudinal axis and the connections are coupled with the microwave power source, the length of each electrode is 1/4 L, where L is the length of the microwave. Each electrode has a hollowed longitudinal flow chamber for the cooling agent connected with metal side tubes, which supply and remove the cooling agent, while outside tube ends are electrically shorted with the housing.

  • PLASMA PROCESSING APPARATUS AND MICROWAVE OUTPUT DEVICE

    A plasma processing apparatus includes: a high voltage power supply for supplying a high voltage power to a magnetron; and a detector for detecting a microwave output from the magnetron, wherein based on a result of comparing a signal, which is obtained by adding an output from the detector to an AC component of a current detected from an output of the high voltage power supply, with a setting value of the output of the high voltage power supply, the output of the high voltage power supply is adjusted.

  • MICROWAVE PROCESSING METHOD AND MICROWAVE PROCESSING APPARATUS

    A microwave processing method for processing an object in a processing chamber is probided by using microwaves. The method includes loading the object into the processing chamber in a state where a pressure in the processing chamber is higher than that of an outside environment; discharging O.sub.2 gas from the processing chamber by introducing N.sub.2 gas into the processing chamber; performing heat treatment on the object by introducing microwaves into the processing chamber from which the O.sub.2 gas has been discharged; and cooling the object in a state where the pressure in the chamber is higher than that of the outside environment.

  • FLEXIBLE MICROWAVE CATHETERS FOR NATURAL OR ARTIFICIAL LUMENS

    A flexible microwave catheter, including a flexible coaxial cable having an inner conductor, an inner dielectric coaxially disposed about the inner conductor, and an outer conductor coaxially disposed about the inner dielectric, at least one feedpoint defining a microwave radiating portion of the flexible coaxial cable, a mesh structure having a collapsed configuration and an expanded configuration and disposed about the microwave radiating portion of the flexible coaxial cable, wherein the mesh structure expands radially outward from the flexible microwave catheter thereby positioning the at least one feedpoint at the radial center of the mesh structure.

  • METHOD FOR CLEANING MICROWAVE PROCESSING APPARATUS

    A method for cleaning a microwave processing apparatus including a processing chamber for accommodating therein an object to be processed, a microwave introducing unit for introducing microwaves into the chamber, and a gas introducing unit for introducing a gas into the processing chamber is provided. The method includes loading an object for cleaning into the processing chamber, introducing a gas into the processing chamber, introducing microwaves into the processing chamber, and unloading the object from the processing chamber.

  • FLOW RATE MONITOR FOR FLUID COOLED MICROWAVE ABLATION PROBE

    A microwave ablation system includes an antenna assembly configured to deliver microwave energy from a power source to tissue and a coolant source operably coupled to the power source and configured to selectively provide fluid to the antenna assembly via a fluid path. The system also includes a controller operably coupled to the power source and a sensor operably coupled to the fluid path and the controller. The sensor is configured to detect fluid flow through the fluid path and the controller is configured to control the energy source based on the detected fluid flow.