­
­
­
­

Inventi Rapid - X-Ray Optics & Instrumentation

Patent Watch

  • WIRELESS X-RAY DETECTOR OPERATION COORDINATION SYSTEM AND METHOD

    In one embodiment, a method for coordinating operation of X-ray detectors in a wireless X-ray system includes detecting multiple wireless X-ray detectors within an operative range of an X-ray base station, the detected X-ray detectors each having one of multiple possible statuses, including an active status corresponding to a designation of the X-ray detector as a desired recipient of radiation during a current X-ray imaging sequence, an inactive status corresponding to a designation of the X-ray detector as not the desired recipient of radiation during a current X-ray imaging sequence, and an unenabled status corresponding to the X-ray detector not being configured to operate with the X-ray base station. The method also includes determining the current status of each detected X-ray detector and displaying on a user-viewable screen a visual indication of the status of each detected X-ray detector.

  • Apparatus with Two Pairs Comprising X-Ray Source and X-Ray Detector

    An apparatus with two pairs of X-ray systems is provided. Each of the X-ray systems has an X-ray source and an X-ray detector. The X-ray detectors differ from each other in their spatial resolution. The X-ray detector with the low spatial resolution makes it possible to record X-ray images in a faster temporal sequence than the other. The doctor carrying out the treatment thus has the option of deciding between the availability of a high spatial resolution and the recording of images in a rapid temporal sequence.

  • METHOD AND APPARATUS FOR USING AN AREA X-RAY DETECTOR AS A POINT DETECTOR IN AN X-RAY DIFFRACTOMETER

    An area detector used in a two-dimensional system is used as a point detector in Bragg-Brentano and other geometries by providing the area detector with a mask the limits the area through which X-rays can enter the detector. Secondary X-ray optics and a monochromator that are part of the diffractometer geometry are attached to the area detector mask to allow a fast and easy switch between the two-dimensional detector mode and the point detector mode. A concave detector mask is used with a spherical detector in order to reduce the secondary beam path and increase detector efficiency and the opening in the detector mask can be offset from the mask center to achieve high 2.theta. angle measurements. Single channel bypath electronics are used to disregard the dimensional position of each X-ray count to increase the efficiency and speed of the system.

  • X-RAY INSPECTION APPARATUS AND X-RAY INSPECTION METHOD

    An X-ray inspection apparatus includes a scanning X-ray source for emitting an X-ray, an X-ray detector drive unit having a plurality of X-ray detectors mounted thereon and being capable of independently driving the plurality of X-ray detectors, and an image acquisition control mechanism for controlling the X-ray detector drive unit and acquisition of image data from the X-ray detectors. The scanning X-ray source emits an X-ray by moving an X-ray focal point position of the X-ray source to each of originating point positions of X-ray emission, which are set for the X-ray detectors such that X-rays are transmitted through a plurality of prescribed inspection areas of an inspection object and enter the X-ray detectors. Image pickup by the X-ray detector and movement of another X-ray detector are concurrently performed in an alternate manner. The image acquisition control mechanism acquires image data, and an operation unit reconstructs an image.

  • X-ray pixels including double photoconductors and x-ray detectors including the x-ray pixels

    Example embodiments are directed to X-ray detectors including double photoconductors. According to example embodiments, the X-ray detector includes a first photoconductor on which X-rays are incident, and a second photoconductor on which X-rays transmitted through the first photoconductor are incident. The first photoconductor and the second photoconductor include a tandem structure. The first photoconductor is formed of silicon and absorbs X-rays in a low energy band, and the second photoconductor is formed of a material that absorbs X-rays in an energy band higher than the low energy band of the X-rays absorbed by silicon.

  • High-Energy X-Ray-Spectroscopy-Based Inspection System and Methods to Determine the Atomic Number of Materials

    The application discloses systems and methods for X-ray scanning for identifying material composition of an object being scanned. The system includes at least one X-ray source for projecting an X-ray beam on the object, where at least a portion of the projected X-ray beam is transmitted through the object, and an array of detectors for measuring energy spectra of the transmitted X-rays. The measured energy spectra are used to determine atomic number of the object for identifying the material composition of the object. The X-ray scanning system may also have an array of collimated high energy backscattered X-ray detectors for measuring the energy spectrum of X-rays scattered by the object at an angle greater than 90 degrees, where the measured energy spectrum is used in conjunction with the transmission energy spectrum to determine atomic numbers of the object for identifying the material composition of the object.

  • CT SCANNING SYSTEMS AND METHODS USING MULTI-PIXEL X-RAY SOURCES

    A CT scanning system may include a multi-pixel x-ray source, and a detector array. The multi-pixel x-ray source may have a plurality of pixels that are disposed along a z-axis, and that are sequentially activated so as to controllably emit x-rays in response to incident electrons. The detector array may have one or more rows of x-ray detectors that detect the x-rays that are emitted from the pixels and have traversed an object, and generate data for CT image reconstruction system. In third generation CT scanning systems, the number of detector rows may be reduced. Multi-pixel x-ray source implementation of saddle curve geometry may render a single rotation single organ scan feasible. Using a multi-pixel x-ray source in stationary CT scanning systems may allow x-ray beam design with a minimal coverage to satisfy mathematical requirements for reconstruction.

  • METHOD AND SYSTEM FOR REDUCING ARTIFACT DUE TO TIME DELAY IN DATA ACQUISTION SYSTEM IN COMPUTER TOMOGRAPHY

    The CT imaging system optimizes its image generation by substantially reducing artifacts caused by a known amount of readout time lag in the X-ray detectors or data acquisition system. Although each detector row takes the same amount of time to read out the signals, the time lag cumulates over the rows as each row is sequentially read out. The back-projection coordinates are correspondingly corrected based upon the above described delay.

  • XRF SYSTEM HAVING MULTIPLE EXCITATION ENERGY BANDS IN HIGHLY ALIGNED PACKAGE

    An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced having a characteristic first energy, and bremsstrahlung energy; a first x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam; and a second x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam to a second energy. The first x-ray optic may monochromate characteristic energy from the source spot, and the second x-ray optic may monochromate bremsstrahlung energy from the source spot. The x-ray optics may be curved diffracting optics, for receiving the diverging x-ray beam from the x-ray tube and focusing the beam at the sample spot. Detection is also provided to detect and measure various toxins in, e.g., manufactured products including toys and electronics.

  • X-ray detector, a corresponding x-ray imaging device and a method for improving the resolution of a scintillator-based x-ray detector

    A device with high efficiency and high spatial resolution for detection of individual x-rays includes a detector for x-rays with energy exceeding 20 keV based on a columnar scintillator having a number of columns, and a semiconductor readout circuit coupled to the scintillator, where the detector is configured for providing a detector resolution that is independent of scintillator thickness. This may be accomplished by estimating a misalignment of the columns of the columnar scintillator with respect to the direction of incoming x-rays and either physically aligning the columns of the columnar scintillator to the direction of incoming x-rays or computationally correcting for the estimated misalignment.

  • Electron emitter apparatus and method of assembly

    An electron emitter assembly, and methods of assembly, is disclosed. The emitter assembly includes an electron emitter that is secured to a support device in a manner such that the emitter is substantially thermally isolated from the support device.

  • COMPACT, LOW NOISE POWER SUPPLY FOR ADVANCED ELECTRONICS APPLICATIONS, AND X-RAY ANALYZER APPLICATIONS THEREOF

    A shielded, low-noise, high-voltage power supply having a plurality of voltage multipliers, each having a toroidal transformer, and collectively producing a high DC output voltage from an AC voltage. A main conductor carries the AC voltage, and is positioned proximate each toroidal transformer of the plurality of voltage multipliers. A conductive shell is conductively connected to the main conductor, and substantially encloses the plurality of voltage multipliers and the main conductor, the conductive shell providing a return path for the AC voltage in the main conductor and providing EMI shielding of the voltage multipliers and the main conductor. Other features are provided, including an intermediate transformer for conditioning/isolating the AC voltages.

  • X-RAY DIFFRACTION CONTRAST TOMOGRAPHY (DCT) SYSTEM, AND AN X-RAY DIFFRACTION CONTRAST TOMOGRAPHY (DCT) METHOD

    An X-ray diffraction contrast tomography system (DCT) comprising a laboratory X-ray source (2), a staging device (5) rotating a polycrystalline material sample in the direct path of the X-ray beam, a first X-ray detector (6) detecting the direct X-ray beam being transmitted through the crystalline material sample, a second X-ray detector (7) positioned between the staging device and the first X-ray detector for detecting diffracted X-ray beams, and a processing device (15) for analysing detected values. The crystallographic grain orientation of the individual grain in the polycrystalline sample is determined based on the two-dimensional position of extinction spots and the associated angular position of the sample for a set of extinction spots pertaining to the individual grain.

  • Electronic X-Ray Camera with Spectral Resolution

    An X-ray camera includes a camera housing, an image pickup element which is sensitive at least for X-rays, and an X-ray objective. The X-ray objective lens has a capillary structure and the image pickup element is constructed as a two-dimensional pixilated semiconductor sensor for simultaneous spatial, energy and time resolution.

  • ENHANCING ACCURACY OF FAST HIGH-RESOLUTION X-RAY DIFFRACTOMETRY

    A method for analysis includes directing a converging beam of X-rays toward a surface of a sample and sensing the X-rays that are diffracted from the sample while resolving the sensed X-rays as a function of angle so as to generate a diffraction spectrum of the sample. The diffraction spectrum is corrected to compensate for a non-uniform property of the converging beam.

  • X-RAY WAVEGUIDE

    An X-ray waveguide which: shows a small propagation loss of an X-ray; does not deteriorate owing to oxidation; and can be easily produced is realized with an X-ray waveguide, including: a core for guiding an X-ray in such a wavelength band that the real part of refractive index of materials is 1 or less; and a cladding for confining the X-ray in the core, in which: the cladding has a one-dimensional periodic structure consisting of at least two materials having different real parts of refractive index; one of the materials is inorganic one, and another one of materials is any of an organic material, a gas, or vacuum; and the core and the cladding are formed so that the critical angle for total reflection at the interface between the core and the cladding is smaller than a Bragg angle depending on the periodicity of the one-dimensional periodic structure.

  • METHOD AND EQUIPMENT FOR AN X-RAY APPARATUS

    A method for determining alignment of light and an X-ray fields of an X-ray apparatus, comprising: directing the light field onto an exposure area, positioning a scale and an X-ray indicating element in association with each other at the exposure area such that said scale and X-ray indicating element cross an edge of the light field, wherein said X-ray indicating element emits light upon exposure to X-rays so that parts exposed to X-rays can be distinguished from non-exposed parts, determining a position on the scale where the light field edge is positioned, and directing the X-ray field onto the exposure area. The method comprises generating an image of the scale and the X-ray indicating element using a digital camera, determining a position on the scale where an edge of the X-ray field is positioned, and comparing the scale positions of the edges of the light and X-ray fields.

  • ELECTRICALLY INSULATING X-RAY SHIELDING DEVICES IN AN X-RAY TUBE

    Electrically insulating x-ray shielding devices in an x-ray tube. In one example embodiment, an x-ray tube includes an evacuated enclosure, a cathode and an anode at least partially positioned within the evacuated enclosure, and an electrically insulating x-ray shielding device proximate to the evacuated enclosure. The electrically insulating x-ray shielding device includes an oxide or nitride material having an atomic number from 57 to 74.

  • X-RAY TUBE WITH BONDED TARGET AND BEARING SLEEVE

    The embodiments disclosed herein relate to the thermal regulation of components within an X-ray tube by transferring heat between the anode and the rotary mechanism to which the anode is attached. For example, in one embodiment, an X-ray tube is provided. The X-ray tube generally includes a fixed shaft, a rotating bearing sleeve disposed about the fixed shaft and configured to rotate with respect to the fixed shaft via a rotary bearing, and an electron beam target disposed about the bearing sleeve and configured to rotate with the bearing sleeve. The electron beam target is permanently bonded to the bearing sleeve.

  • X-RAY TUBE THERMAL TRANSFER METHOD AND SYSTEM

    The embodiments disclosed herein relate to the thermal regulation of components within an X-ray tube, and more specifically to heat transfer between the anode and the rotary mechanism to which the anode is attached. For example, in one embodiment, an X-ray tube is provided. The X-ray tube generally includes a fixed shaft, a rotating bearing sleeve disposed about the fixed shaft and configured to rotate with respect to the fixed shaft via a rotary bearing, an electron beam target disposed about the bearing sleeve and configured to rotate with the bearing sleeve, and a thermally conductive, deformable metallic gasket disposed between the target and the bearing sleeve and configured to conduct heat between the target and the bearing sleeve in operation.

  • ACTIVE THERMAL CONTROL OF X-RAY TUBES

    The present embodiments relate to active thermal control of X-ray tubes, for example X-ray tubes used in CT imaging. In one embodiment, a system for thermal control of an X-ray tube is provided. The system includes an X-ray tube having an electron beam target, a rotary bearing supporting the target in rotation, and a coolant flow passage, at least a portion of the coolant flow passage being disposed in the center of the rotary bearing, and the coolant flow passage is configured to receive a coolant. The system also includes a coolant circulating system coupled to the coolant flow passage and configured to circulate the coolant thorough the coolant flow passage, and a control circuit coupled to the coolant circulating system and the rotary bearing, the control circuit being configured to control heat flow between components of the X-ray tube by regulating extraction of heat from the X-ray tube via the coolant and by regulating a rotation rate of the rotary bearing.

  • APPARATUS AND METHOD FOR MULTI-MODAL IMAGING USING MULTIPLE X-RAY SOURCES

    An imaging system for imaging at least a first and a second subject has a support stage to support the subjects. An imaging system has an ionizing radiation imaging section with at least a first ionizing radiation source for directing ionizing radiation within a first zone that includes the first subject and a second ionizing radiation source for directing ionizing radiation within a second zone that lies substantially outside the first zone and that includes the second subject. At least one imaging receiver forms an image of the subject within each zone. A camera system obtains at least one image of the at least first and second subjects. A computer is in signal communication with the imaging system and energizable to form a combined image from two or more images of the same subjects.

  • MOTOR ASSISTED MANUALLY CONTROLLED MOVEMENT ASSEMBLY, X-RAY SYSTEM COMPRISING THE SAME, METHOD AND USE

    A motor assisted movement assembly 2 is provided comprising a motor arrangement 3, which motor arrangement 3 may assist a manually controlled movement of a first structural element 5 relative to a second structural element 6. A motor element 3a of the motor arrangement 3 is adapted to detect a manual indication of a desired movement of the second structural element 6 relative to the first structural element 5 with the motor arrangement 3 being adapted to assist, e.g. support the movement by providing an additional f

  • X-Ray Detector, Method of Controlling the Same, and X-Ray Photographing System

    An X-ray detector photographs an object by receiving an X-ray irradiated from an X-ray generator. The X-ray detector includes: a plurality of photo-detecting pixels, each of which includes a photodiode, which detects an X-ray and generates an electric signal corresponding to an amount of a transmitted X-ray, and a switching device which transmits the electric signal; a gate driver which supplies a gate pulse to the switching device for turning on the switching device; and a read-out integrated circuit (IC) which reads out the electric signals from the plurality of photo-detecting pixels; wherein the gate driver and the read-out IC initialize the plurality of photo-detecting pixels in response to an X-ray warm-up control signal causing warm up of the X-ray generator.

  • APPARATUS AND METHOD FOR IMPROVED TRANSIENT RESPONSE IN AN ELECTROMAGNETICALLY CONTROLLEDX-RAY TUBE

    An x-ray tube assembly includes a vacuum enclosure that has a cathode portion, a target portion, and a throat portion. The throat portion includes a metal bellows. An upstream end of the throat portion is coupled to the cathode portion and a downstream end of the throat portion is coupled to the target portion. The x-ray tube assembly also includes a target positioned within the target portion of the vacuum enclosure, and a cathode positioned within the cathode portion of the vacuum enclosure. The cathode is configured to emit a stream of electrons through the throat portion toward the target.

  • APPARATUS AND METHOD FOR IMPROVED TRANSIENT RESPONSE IN AN ELECTROMAGNETICALLY CONTROLLEDX-RAY TUBE

    An x-ray tube assembly includes a vacuum enclosure that includes a cathode portion, a target portion, and a throat portion having a plurality of recesses formed therein to break up eddy currents generated in the throat portion. The throat portion has an upstream end coupled to the cathode portion and a downstream end coupled to the target portion. The x-ray tube assembly also includes a target positioned within the target portion of the vacuum enclosure, and a cathode positioned within the cathode portion of the vacuum enclosure. The cathode is configured to emit a stream of electrons through the throat portion toward the target.

  • DIGITAL X-RAY DETECTOR ARRANGEMENT AND DIGITAL X-RAY IMAGING METHOD

    The invention relates to digital imaging implemented using X-radiation and to a detector arrangement designed to be used in such imaging, the operation of said arrangement being based on counters counting signal pulses. In the invention, the detector arrangement comprises switch arrangements which are always connectable to at least two counters and which allow at least one of the counters to be always disconnected from a pixel. It is thus always possible to read out the information from at least one counter while another counter is simultaneously being used for counting signal pulses. The invention provides the advantage that the integration of image information need not be interrupted when information is to be read out from the detector during exposure as a change of the integrating counter can be effected during exposure without losing any image information.

  • System for Verifying Data Integrity in an X-Ray Imaging System

    An error detection system is used by an image processing subsystem for detecting error in processing medical image data by multiple sequential subsystems using an image data processor. The image data processor in the image processing subsystem analyzes data representing a medical image to identify a sequence identifier associated with a subsystem preceding the image processing subsystem of the multiple sequential subsystems and identifies a position of the image relative to other images in an image sequence comprising multiple consecutive images. The image data processor uses the identified sequence identifier to detect an error in response to identifying at least one of, an unreadable sequence identifier and a missing sequence identifier. The image data processor incorporates a sequence identifier, in image data representing an area of the image associated with the image processing subsystem and initiates generation of an alert message in response to a detected error.

  • FIRING DELAY FOR RETROFIT DIGITAL X-RAY DETECTOR

    A method and apparatus are disclosed for obtaining an x-ray image from an x-ray imaging apparatus using a digital radiography receiver installs a retrofit connection apparatus that adapts the x-ray imaging apparatus for use with the digital radiography receiver by forming a receiver interface channel for communicating signals to and from the digital radiography receiver, forming an operator interface channel for routing at least an input expose signal from an operator control to the connection apparatus and forming a generator interface channel for transmitting at least an output expose signal from the retrofit connection apparatus to an x-ray generator of the x-ray imaging apparatus. An input expose signal over the operator interface channel initiates a reset of the digital radiography receiver over the receiver interface channel before the output expose signal to the x-ray generator is transmitted over the generator interface channel.

  • X-RAY PHOTOGRAPHING DEVICE

    An X-ray photographing device (1) comprising a turning means (3) for turning an x-ray source (11) and an X-ray sensor (12) around a subject (K) is provided with an arcuate movement means (4) for arcuately moving the X-ray sensor (12) around an arcuate movement center axis (C2), and a control unit (8). The control unit (8) continuously performs a first photographing step for detecting an X-ray flux (L) while turning the X-ray sensor (12) in a first arcuate movement range (d1) around the arcuate movement center axis (C2) by the arcuate movement means (4), a shifting/turning step for shifting/turning an arcuate movement arm (2) around the subject (K) by the turning means (3), and a shifting/photographing step for detecting the X-ray flux (L) while turning the X-ray sensor (12) in a second arcuate movement range (d2) around the arcuate movement center axis (C2) by the arcuate movement means (4) in the state shifted from the first arcuate movement range (d1) by a very small angle in the shifting/turning step. This configuration enables the acquisition of a CT tomographic image using a vertically long and inexpensive X-ray photographing means, thereby enabling cost reduction.

  • X-RAY CT APPARATUS

    In order to improve the tiling workability in manufacturing an X-ray detector and provide a technology for acquiring high-quality reconstruction images, when aligning a plurality of detector blocks (or detector modules) in a slice direction, a distance between adjacent X-ray detection elements between detector blocks (inter-block distance) is not matched with a distance between adjacent detector elements within a detector block (intra-block distance). Instead, between reference positions when manufacturing each detector block, output values at the positions, the number of which is the same as the number of X-ray detection elements between the reference positions and which are spaced at equal intervals, are estimated from the acquired raw data. Projection data is generated from the position and the raw data.

  • MEDICAL IMAGE PROCESSING APPARATUS, X-RAY COMPUTED TOMOGRAPHY APPARATUS, AND MEDICAL IMAGE PROCESSING METHOD

    According to one embodiment, a medical image processing apparatus includes an image storage unit, an estimation unit, a combination ratio determination unit, and a combined image generation unit. The estimation unit is configured to estimate an abundance ratio of one of a first and second substances to the other for each pixel based on attenuation coefficients of the first substance which correspond to a first and second energies, the attenuation coefficients of a second substance which correspond to the first and second energies, and pixel values of a first and second medical images. The combination ratio determination unit is configured to determine combination ratios of pixel values between the first and second medical images for each pixel based on the abundance ratios of the first and second substances and the attenuation coefficients of the first and second substances which are associated with a target energy.

  • X-ray apparatus and control method thereof

    An X-ray apparatus includes guide rails arranged along different axes, an X-ray tube movably mounted on at least one of the guide rails and adapted to be moved upon user force, motors provided at the guide rails to move the X-ray tube, a force detection unit to detect the user force, and a control unit to determine a direction of force and drive the motor provided at the guide rail on an axis corresponding to the determined direction. The X-ray apparatus may be easily moved based on force detection and velocity control of the motor, thereby achieving more precise and safe movement in a desired direction. Accordingly, the X-ray apparatus may provide rapid and efficient medical examination and treatment in hospitals.

  • X-RAY TOMOGRAPHY METHOD AND APPARATUS USED IN CONJUNCTION WITH A CHARGED PARTICLE CANCER THERAPY SYSTEM

    The invention comprises an X-ray tomography method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. In various embodiments, 3-D images are generated from a series of 2-D X-rays images; the X-ray source and detector are stationary while the patient rotates; the 2-D X-ray images are generated using an X-ray source proximate a charged particle beam in a charged particle cancer therapy system; and the X-ray tomography system uses an electron source having a geometry that enhances an electron source lifetime, where the electron source is used in generation of X-rays. The X-ray tomography system is optionally used in conjunction with systems used to both move and constrain movement of the patient, such as semi-vertical, sitting, or laying positioning systems. The X-ray images are optionally used in control of a charged particle cancer therapy system.

  • X-RAY CT APPARATUS AND IMAGE DISPLAY METHOD OF X-RAY CT APPARATUS

    The X-ray CT apparatus which includes an X-ray generator and an X-ray detector for acquiring projection data of an object from plural angles and creates an arbitrary cross-sectional image of the object on the basis of the projection data includes: an extraction section which extracts a region, which includes a target organ moving periodically, from the cross-sectional image; a synchronous phase determination section which determines a synchronous phase, which is used when creating a synchronous cross-sectional image synchronized with periodic motion of the target organ, on the basis of continuity of the target organ in a direction perpendicular to the cross-sectional image; a synchronous cross-sectional image creating section which creates the synchronous cross-sectional image on the basis of projection data corresponding to the synchronous phase determined by the synchronous phase determination section; and a display unit which displays the synchronous cross-sectional image.

  • X-RAY IMAGING APPARATUS

    An X-ray imaging apparatus according to one embodiment of the present invention includes: an arm unit holding an X-ray tube unit that generates an X-ray and an X-ray detection unit that detects the X-ray generated by the X-ray tube unit; a column unit rotatably supporting the arm unit; a holding unit holding the column unit at a floor surface; an inclining unit inclining the column unit with the holding unit as a rotation center axis thereof; and a controller performing control, when the column unit is inclined by the inclining unit, to horizontally move the X-ray tube unit and X-ray detection unit while maintaining the relative distance and relative angle therebetween.

  • POST FRAME FOR X-RAY APPARATUS AND CEILING TYPE X-RAY APPARATUS WITH THE SAME

    The present invention relates to a post frame for X-ray apparatus and a ceiling type X-ray apparatus. The post frame according to the present invention comprises: a main frame comprising a fixed frame fixed to the X-ray apparatus and a plurality of movable frames received by and arranged in the fixed frame; and a bearing part provided on the main frame, wherein the main frame comprises: a guide integrated with the main frame, that protrudes inward from the main frame and has an insertion groove at both sides; and a connecting bar that is inserted into the insertion grooves and is in contact with a bearing of the bearing part. Since the welding of the guide is not required, time and cost for manufacturing the post frame are reduced. The connecting bar can be assembled easily by simply inserting it into the guide groove.

  • X-Ray Focusing Device

    The X-ray focusing device includes a point/parallel type multi-capillary X-ray lens (MCX) and a point/parallel type single capillary X-ray lens (SCX). MCX and SCX are positioned so that the end face of the parallel end of SCX is positioned closed to the focal point position on the converging end of MCX so that the optical axes of the two coincide. X-rays that are efficiently collected by MCX are emitted from the converging end and become incident to the end face of parallel end of SCX so that the X-rays are efficiently incorporated into SCX. The X-rays are then irradiated from the converging end of SCX onto focal point having a small diameter. This allows taking advantages of MCX and SCX while compensating for their disadvantages.

  • X-RAY TUBE

    An X-ray tube has a cathode, an anode target to emit X-rays, and a vacuum envelope which houses the cathode and the anode target. The vacuum envelope has a first metal member connected to the anode target, a second metal member which is connected to the first metal member and has a coefficient of thermal expansion lower than that of the first metal member, and an electrically insulating annular ceramic member connected to the second metal member and the cathode. In addition, the X-ray tube has a cooling system which is connected to the first metal member and forms a cooling passage. Furthermore, the X-ray tube has an adapter which is in contact with the first metal member, surrounds the second metal member and has a thermal conductivity higher than that of the second metal member, and a heat-transfer medium placed between the ceramic member and the adapter.

  • X-RAY DETECTION SIGNAL PROCESSING APPARATUS AND METHOD THEREFOR

    An X-ray detection signal processing apparatus of the present invention is such that after a signal from a preamplifier has been converted into a digital signal at a high speed by means of a high speed analog-to-digital converter (1), a process for removing influences brought about by a component that has been decayed by a differential time constant in the preamplifier is performed on a digital basis in a digital signal processing block (2). An event detecting unit (3) within the digital signal processing block (2), smoothen the signal from the high speed analog-to-digital converter (1) for a predetermined shaping time with the use of a filter function for high speed shaping, detects as an event information the timing at which the smoothened signal exceeds a predetermined threshold and attains the maximum value, and add such event information to the signal from the high speed analog-to-digital converter (1).

  • X-RAY IMAGING SYSTEM AND POSITIONING METHOD OF THE SAME

    Disclosed are an X-ray imaging system and a positioning method of the same that automatically measure a relative positional relationship between devices. According to an aspect, an X-ray imaging system may include: a movable imaging device having a sensor; one or more beacons; a controller configured to analyze position information recognized by the sensor, to compare a relative position between the imaging device and the one or more beacons and to determine a position of the imaging device based on a positional error; and a drive device configured to move the imaging device to the position determined by the controller.

  • METHOD, IMAGE DATA RECORD PROCESSING FACILITY, X-RAY SYSTEM AND COMPUTER PROGRAM PRODUCT FOR CORRECTING IMAGE DATA OF AN EXAMINATION OBJECT

    A method and an image data record processing facility are disclosed for correcting image data of an examination object, which includes a first image data record obtained using a first X-ray energy and a second image data record obtained using a second X-ray energy. In this process, a corrected image data record is generated by subtracting from image point values at certain image point positions of the first image data record, image point values, which are assigned to the corresponding image point positions in the second image data record, multiplied by a weighting factor. The weighting factor here is selected as a function of the first X-ray energy used and the second X-ray energy used so that on subtraction a calcium component is removed from the image point values. A method for generating image data and an X-ray system having such an image data record processing facility are also described.

  • X-RAY GENERATING DEVICE WITH ELECTRON SCATTERING ELEMENT AND X-RAY SYSTEM

    The present invention relates to X-ray generating technology in general. Providing X-ray generating device internal voltage sources or potentials may help reduce necessary feed-throughs into an evacuated envelope of an X-ray generating device. Consequently, an X-ray generating device comprising an electron scattering element is presented. According to the present invention, an X-ray generating device is provided, comprising an electron emitting element 16, an electron collecting element 20 and an electron scattering element 42. A primary electron beam 17a is arrangeable between the electron emitting element 16 and the electron collecting element 20. The electron emitting element 16 and the electron collecting element 20 are operatively coupled for generating X-radiation 14.

  • FLUENCE MONITORING DEVICES WITH SCINTILLATING FIBERS FOR X-RAY RADIOTHERAPY TREATMENT AND METHODS FOR CALIBRATION AND VALIDATION OF SAME

    According to one aspect, a fluence monitoring detector for use with a multileaf collimator on a radiotherapy machine having an x-ray radiation source. The fluence monitoring detector includes a plurality of scintillating optical fibers, each scintillating optical fiber configured to generate a light output at each end thereof in response to incident radiation pattern thereon from the radiation source and multileaf collimator, a plurality of collection optical fibers coupled to the opposing ends of the scintillating optical fibers and operable to collect the light output coming from both ends of each scintillating optical fiber, and a photo-detector coupled to the collection optical fibers and operable to converts optical energy transmitted by the collection optical fibers to electric signals for determining actual radiation pattern information.

  • X-Ray Sources

    The present application is directed to an anode for an X-ray tube. The X-ray tube has an electron aperture through which electrons emitted from an electron source travel subject to substantially no electrical field and a target in a non-parallel relationship to the electron aperture and arranged to produce X-rays when electrons are incident upon a first side of the target, wherein the target further comprises a cooling channel located on a second side of the target. The cooling channel comprises a conduit having coolant contained therein. The coolant is at least one of water, oil, or refrigerant.

  • Combining X-ray and VUV Analysis of Thin Film Layers

    Apparatus for inspection of a sample includes an X-ray source, which is configured to irradiate a location on the sample with a beam of X-rays. An X-ray detector is configured to receive the X-rays that are scattered from the sample and to output a first signal indicative of the received X-rays. A VUV source is configured to irradiate the location on the sample with a beam of VUV radiation. A VUV detector is configured to receive the VUV radiation that is reflected from the sample and to output a second signal indicative of the received VUV radiation. A processor is configured to process the first and second signals in order to measure a property of the sample.

  • X-RAY DIAGNOSTIC APPARATUS

    In order to achieve reductions in the size and weight of an arm while ensuring the strength, an X-ray diagnostic apparatus includes an X-ray generation unit, an X-ray detection unit, an arm having an arch shape which supports the X-ray generation unit and the X-ray detection unit, and at least one reinforcing member which has a higher elastic modulus than the arm and a sheet-like shape and is fixed to the arm.

  • METHOD AND APPARATUS FOR ADVANCED X-RAY IMAGING SYSTEMS

    The present invention pertains to an apparatus and method for X-ray imaging a human patient. A vacuum bell bonded to an X-ray radiation-permeable window that can emit X-ray radiation from a plurality of spots located 1 cm from its edge, a collimator, and a detector are used. A ring of stationary X-ray sources can also be used with a stationary collimator and a rotating slot collimator and detector. An X-ray beam can be aligned in an X-ray system by establishing a position of the beam with respect to a moving collimator at a number of points in time, monitoring the velocity of the collimator, navigating the beam to a calculated position of a hole in the collimator, and correcting the alignment of the beam based on the location of the beam on the detector.

  • HYBRID STENT AND METHOD OF MAKING

    A stent is formed by encasing or encapsulating metallic rings in an inner polymeric layer and an outer polymeric layer. At least one polymer link connects adjacent metallic rings. The stent is drug loaded with one or more therapeutic agent or drug, for example, to reduce the likelihood of the development of restenosis in the coronary arteries. The inner and outer polymeric materials can be of the same polymer or different polymer to achieve different results, such as enhancing flexibility and providing a stent that is visible under MRI, computer tomography and x-ray fluoroscopy.

  • Molecular Sieve Composition (EMM-10-P), Its Method of Making, and Use for Hydrocarbon Conversions

    This invention relates to a crystalline molecular sieve having, in its as-synthesized form, an X-ray diffraction pattern including d-spacing maxima at 13.18.+-.0.25 and 12.33.+-.0.23 Angstroms, wherein the peak intensity of the d-spacing maximum at 13.18.+-.0.25 Angstroms is at least as great as 90% of the peak intensity of the d-spacing maximum at 12.33.+-.0.23 Angstroms. This invention also relates to a method of making thereof.

  • Omni-Tomographic Imaging for Interior Reconstruction using Simultaneous Data Acquisition from Multiple Imaging Modalities

    Embodiments of the invention relate to omni-tomographic imaging or grand fusion imaging, i.e., large scale fusion of simultaneous data acquisition from multiple imaging modalities such as CT, MRI, PET, SPECT, US, and optical imaging. A preferred omni-tomography system of the invention comprises two or more imaging modalities operably configured for concurrent signal acquisition for performing ROI-targeted reconstruction and contained in a single gantry with a first inner ring as a permanent magnet; a second middle ring containing an x-ray tube, detector array, and a pair of SPECT detectors; and a third outer ring for containing PET crystals and electronics. Omni-tomography offers great synergy in vivo for diagnosis, intervention, and drug development, and can be made versatile and cost-effective, and as such is expected to become an unprecedented imaging platform for development of systems biology and modern medicine.

  • METHOD AND KIT FOR DENTAL IMPLANT DRILLING GUIDES

    Method and kit for producing implant drilling guides positioned at the proper orientation to avoid inadvertent damage to critical regions of the patient's jaw when drilling to place dental implant screws. The method works by placing a small post device with x-ray visible depth markers in the root socket of the patient's tooth immediately after tooth extraction. The post device may additionally be configured to guide the drill at a position and angle that is different from that of the original tooth socket. This post device is used to construct a removable guide that anchors to the patient's adjacent teeth, and preserves the location and orientation of the extracted tooth root. Once the root socket is filled in with new bone, the guide, in conjunction with the X-ray post depth information, can be used to direct drilling along the same route as the old tooth root, thus avoiding critical structures.

  • IMAGE DIAGNOSIS APPARATUS INCLUDING X-RAY IMAGE TOMOSYNTHESIS DEVICE AND PHOTOACOUSTIC IMAGE DEVICE AND IMAGE DIAGNOSIS METHOD USING THE SAME

    Provided are an image diagnosis apparatus and an image diagnosis method using the same. The image diagnosis apparatus includes an X-ray image tomosynthesis device fixing an object using an object fixing unit, the X-ray image tomosynthesis device generating an image tomosynthesis signal by irradiating a plurality of X-rays into the object, a photoacoustic image device fixing the object using the object fixing unit, the photoacoustic image device generating an ultrasonic signal by scanning the object using a photoacoustic light source, an image processing device for processing image signals transmitted from the X-ray image tomosynthesis device and the photoacoustic image device to generate a three-dimensional (3D) image, and a display device for displaying the 3D image generated from the image processing device. The image diagnosis apparatus may realize internal tissues of the object into a clear 3D image.

  • SYSTEM AND METHOD FOR INTEGRATING MULTIPLE DATA SOURCES INTO AN X-RAY IMAGE REFERENTIAL

    A method for integrating multiple data sources into an X-ray image referential includes generating an X-ray image of a subject. The method also includes collecting information from sensors of a catheter disposed within the subject. The method further includes generating the X-ray image referential on a coordinate system by merging a model of an anatomy and the collected information from the sensors of the catheter to the X-ray image, wherein the X-ray image referential includes a display of a trace of a catheter. In addition, the method includes displaying the X-ray image referential on a display.

  • RECONSTRUCTION COMPUTING DEVICE, RECONSTRUCTION COMPUTING METHOD, AND X-RAY CT APPARATUS

    In order to provide a reconstruction computing device, a reconstruction computing method, and an X-ray CT apparatus capable of improving the image quality while reducing the amount of computation when reconstructing an X-ray CT image using an iterative method, a reconstruction computing device divides an initial image 50 reconstructed using an analytical method such as an FBP method into a bed region 51, an object region 52, and the other air region 53, sets reconstruction conditions including at least convergence conditions and a pixel size for each of the divided regions, updates estimation images by performing an iterative process, and fixes estimation images or forward projection data of a subset satisfying the convergence conditions until other subsets satisfy the convergence conditions.

  • HEAD HOLDER, IMAGING TABLE, AND X-RAY CT APPARATUS

    A head holder for imaging is provided. The head holder includes a base, a head rest configured to receive a head of a subject, the head rest pivotally connected to the base and rotatable about a rotational axis defined through a lower end of the head rest, and a stopper configured to be inserted between the base and the head rest to support the head rest and fix the head rest at a tilt angle that corresponds to an insertion position of the stopper in a body axis direction of the subject.

  • FLUOROSCOPIC X-RAY APPARATUS

    When a multi-system setting command switch, targeted rotating position information switches, and a command executing switch are pressed down, a CPU reads out a path of frontal and lateral systems from a current position to a setting position from a setting position information memory, and reads out rotation direction and angle from a targeted position information memory. The CPU moves the frontal and lateral systems horizontally along the read-out path until the commanded setting position information conforms to detected actual position information. When the setting position information conforms to the actual position information, the frontal and lateral systems are rotated successively until the commanded rotation direction and angle conform to the detected actual position information. Thereby a fluoroscopic X-ray system can be moved smoothly from a standby position via the setting position to a targeted rotating position.

  • ELECTRIC FIELD EMISSION X-RAY TUBE APPARATUS EQUIPPED WITH A BUILT-IN GETTER

    The present disclosure relates to an electric field emission x-ray tube apparatus equipped with a built-in getter, and more particularly, to an electric field emission x-ray tube apparatus equipped with a built-in getter that makes it possible to reduce the size of an x-ray tube by forming a stacked structure, with electric insulation and predetermined gaps maintained for each electrode, by manufacturing an x-ray tube having a stacked structure by inserting insulating spacers (for example, ceramic) between an exhausting port, a cathode, a gate, a focusing electrode, and an anode and bonding them with an adhesive substance, and then inserting a spacer between a field emitter on a cathode substrate and a gate hole connected with a gate electrode.

  • AUTOMATIC POSITIONING OF ABSORPTION MEANS IN X-RAY IMAGE ACQUISITION

    The present invention relates to automatic absorption means positioning in X-ray image acquisition. To improve image quality and to optimize the radiation exposure of an object, optimal position for X-ray absorption means is provided. A first sequence (113) of X-ray images is acquired (112). For each of the images, the optimal position (115) for X-ray absorption means is determined (114). A second sequence (117) of X-ray images is associated 10 (116) with corresponding images of the first sequence. The determined optimal position for the absorption means (14) of the associated corresponding images of the first sequence (113) is selected for an acquisition of the second sequence (117). Hence, a situation-specific database with optimized positions for the absorption means is generated on behalf of the first sequence in order to provide the generated position information for the actual acquisition of a 15 second sequence of images.

  • METHOD FOR DETECTING THE TRUE COINCIDENCE OF TWO CHARGE PULSES ON ADJACENT PICTURE ELEMENTS, X-RAY DETECTOR AND X-RAY IMAGE RECORDING APPARATUS

    With the aid of discriminators on a picture element of an X-ray detector, digital outputs are generated that indicate energy intervals to which X-ray quanta are allocated. If this occurs for adjacent picture elements, a distinction may be made between true coincidences, in which k-fluorescence photons play a part, and random coincidences in which two primary quanta randomly strike adjacent picture elements. The energy of the primary quantum may also be at least roughly reconstructed in the case of true coincidences. An energy-triggering measurement may thereby be provided to the extent that different materials of a picture object should be distinguished.

  • X-RAY IMAGING APPARATUS AND METHOD OF OPERATING THE SAME

    An apparatus including a scintillator panel which absorbs X-rays radiated from an X-ray generator and converts the X-rays into visible light; an image detector including a plurality of pixels arranged in a matrix array and charging the plurality of pixels with electric charges proportional to intensity of the visible light converted by the scintillator panel; a gate driver which selects a line in the image detector and applies a drive signal to pixels in the selected line; an automatic exposure request signal generator which generates an automatic exposure request signal as a trigger signal informing of X-ray radiation through detection of X-rays radiated from the X-ray generator; and a controller which controls a time point of performing an exposure operation depending on a state of the drive signal applied to the pixels of the selected line in response to the automatic exposure request signal is disclosed.

  • X-Ray Scanners

    The present application discloses an X-ray scanner having an X-ray source arranged to emit X-rays from source points through an imaging volume. The scanner may further include an array of X-ray detectors which may be arranged around the imaging volume and may be arranged to output detector signals in response to the detection of X-rays. The scanner may further include a conveyor arranged to convey an object through the imaging volume in a scan direction, and may also include at least one processor arranged to process the detector signals to produce an image data set defining an image of the object. The image may have a resolution in the scan direction that is at least 90% as high as in one direction, and in some cases two directions, orthogonal to the scan direction.

  • Method For Estimating Effective Atomic Number And Bulk Density Of Rock Samples Using Dual Energy X-Ray Computed Tomographic Imaging

    A method for estimating effective atomic number and bulk density of objects, such as rock samples or well cores, using X-ray computed tomographic imaging techniques is provided. The method effectively compensates for errors in the interpretation of CT scan data and produces bulk densities which have lower residual error compared to actual bulk densities and produces bulk density--effective atomic number trends which are consistent with physical observations.

  • DIRECT CONVERSION X-RAY DETECTOR WITH RADIATION PROTECTION FOR ELECTRONICS

    The present invention relates to an X-ray detector having an X-ray sensor (first X-ray sensor) converting X-radiation directly into electric charge carriers, having signal evaluation electronics electrically connected to the X-ray sensor and preferably formed as integrated circuit(s), having an X-ray absorber formed for protecting the signal evaluation electronics, and having a sensor carrier (first sensor carrier) formed and arranged for positioning the X-ray sensor relative to the X-ray absorber, wherein, viewed in the direction of incidence of the X-radiation, both the signal evaluation electronics are arranged behind the X-ray absorber and in the X-radiation shadow thereof and the X-ray sensor is admittedly likewise positioned by means of the sensor carrier preferably arranged between the X-ray absorber and the signal evaluation electronics at least sectionally behind the X-ray absorber, but outside the X-radiation shadow thereof.

  • METHOD AND X-RAY DEVICE FOR TEMPORAL UP-TO-DATE REPRESENTATION OF A MOVING SECTION OF A BODY, COMPUTER PROGRAM PRODUCT AND DATA CARRIER

    A computer-implemented method for temporal up-to-date representation of a moving section of a body is provided. A first x-ray image data record is provided containing the moving section in a specific movement phase and a first 2D x-ray image and a 3D x-ray image superimposed and registered with one another. 2D x-ray images are repeatedly recorded each containing the moving section. 3D ultrasound images are repeatedly recorded each containing the moving section. Extended 2D x-ray images are created from the 2D x-ray images using the first x-ray images data record. The 3D ultrasound images are used as intermediaries for movement correction. The extended 2D images are displayed.

  • HYBRID X-RAY OPTIC APPARATUS AND METHODS

    According to some aspects, a hybrid optic is provided. The hybrid optic comprises a capillary optic for receiving x-rays from an x-ray source at an entrance portion of the capillary optic and for providing x-rays at an exit portion of the capillary optic, and a grazing incidence multi-shell optic (GIMSO) coupled, at an entrance portion of the GIMSO, to the exit portion of the capillary optic to receive x-rays emerging from the exit portion of the capillary optic, the GIMSO including an exit portion for providing x-rays.

  • X-RAY WAVEGUIDE AND X-RAY WAVEGUIDE SYSTEM

    An X-ray waveguide includes a cladding and a core to guide X-rays. The core includes a periodic structure of plural substances having different values of a refractive-index real part in a direction perpendicular to an X-ray guiding direction. A Bragg angle determined depending on a wavelength of an X-ray and periodicity of the periodic structure is smaller than a critical angle for total reflection of the X-ray at an interface between the core and the cladding. The Bragg angle is larger than a critical angle for total reflection of the X-ray at an interface between the plural substances constituting the periodic structure. The core has, in the X-ray guiding direction, two or more regions differing in periodic number of the periodic structure constituting the core with a core width in a direction of period being different between the two or more regions corresponding to change of the periodic number.

  • METHOD AND EVALUATION DEVICE FOR DETERMINING THE POSITION OF A STRUCTURE LOCATED IN AN OBJECT TO BE EXAMINED BY MEANS OF X-RAYCOMPUTER TOMOGRAPHY

    In a method and an evaluation device for determining the position of a structure located in an object to be investigated by means of X-ray computer tomography, a cutting data record, which images the object in a cutting plane, is determined from a volume data record of the object. The cutting data record is binarized to form a binary data record, in which the structure voxels imaging the structure and the surface voxels imaging an object surface are determined. To determine the position, a distance data record is produced in such a way that a distance value, which characterizes the smallest distance of the respective distance voxel from the surface voxels, is assigned to each distance voxel of the distance data record. The distance voxels corresponding to the structure voxels are then determined and the associated distance values evaluated.

  • X-RAY FACILITY HAVING A RECORDING ARRANGEMENT HELD ON SUPPORT ARMS

    An X-ray facility has at least one x-ray emitter, an x-ray detector and an isocenter arranged along a central beam path between the x-ray emitter and the x-ray detector. The x-ray emitter and the x-ray detector are arranged on separate support arms. At least one rotary device is provided on each support arm, by way of which the x-ray emitter or the x-ray detector can be rotated about an axis of rotation intersecting the isocenter and not corresponding to the central beam. Wherein the axes of rotation match rotary devices assigned to one another on different support arms.

  • MOBILE X-RAY APPARATUS

    An X-ray facility has at least one x-ray emitter, an x-ray detector and an isocenter arranged along a central beam path between the x-ray emitter and the x-ray detector. The x-ray emitter and the x-ray detector are arranged on separate support arms. At least one rotary device is provided on each support arm, by way of which the x-ray emitter or the x-ray detector can be rotated about an axis of rotation intersecting the isocenter and not corresponding to the central beam. Wherein the axes of rotation match rotary devices assigned to one another on different support arms.

  • DETERMINING CHANGES IN THE X-RAY EMISSION YIELD OF AN X-RAY SOURCE

    The present invention relates to determining changes in the X-ray emission yield of an X-ray tube, in particular determining dose degradation. In order to provide determination of such changes, an X-ray source is provided comprising a cathode, an anode; and at least one X-ray sensor (16). The cathode emits electrons towards the anode and the anode comprises a target area on which the electrons impinge, generating X-ray radiation. An X-ray barrier (24) is provided with an aperture (26) for forming an emitting X-ray beam from the X-ray radiation, wherein the emitting X-ray beam has a beam formation (30) with a central axis. The at least one X-ray sensor is arranged within the beam formation and measures the X-ray intensity for a specific direction of X-ray emission with an angle with respect to the central axis. The at least one X- ray sensor can be positioned inside the beam formation (30), but outside the "actual field of view" (40) as determined by a diaphragm (36).

  • X-RAY SENSOR, METHOD FOR TESTING THE X-RAY SENSOR, AND X-RAY DIAGNOSTIC DEVICE EQUIPPED WITH THE X-RAY SENSOR

    An X-ray sensor according to the present invention includes: a light-transmissive substrate (17); a light-transmissive electrode (21) formed on one surface of the light-transmissive substrate (17); and a photoconductive film (18) including a hole injection blocking layer (22), a field buffer layer (23), a hole trap layer (24), a photoconductive sensitive layer (25) having a charge-multiplying function, and an electron injection blocking layer (26), the layers being sequentially provided on the one surface of the light-transmissive substrate (17) having the light-transmissive electrode (21). The field buffer layer (23) is larger in thickness than a layer composed of the light-transmissive electrode (21) and the hole injection blocking layer (22).

  • SYSTEM AND METHOD FOR CONTRAST AGENT ESTIMATION IN X-RAY IMAGING

    The disclosed embodiments relate to determining an amount of a contrast agent in an image. For example, a computer-implemented method of image processing includes generating, from a first polychromatic contrast-enhanced X-ray image obtained at a first energy and a second polychromatic contrast-enhanced X-ray image obtained at a second energy, a simulated first monochromatic contrast-enhanced X-ray image and a simulated second monochromatic contrast-enhanced X-ray image. The simulated first monochromatic contrast-enhanced X-ray image includes first regions of enhanced contrast and the simulated second monochromatic contrast-enhanced includes second regions of enhanced contrast. The method also includes isolating the first and second regions of enhanced contrast from other regions of the image, and determining an amount of the contrast agent within the first and second regions of enhanced contrast based at least on a derived partial signal attributable to the contrast agent.

  • Shielding Electrode for an X-Ray Generator

    An x-ray generator includes a voltage source and a voltage divider network coupled thereto, a housing, and an insulator carried within the housing. An emitter cathode is carried within the housing and emits electrons and undesirable conductive particles. In addition, there is a shielding electrode carried within the housing downstream of the emitter cathode and coupled to the voltage divider network. A target is carried within the housing downstream of the at least one shielding electrode. The voltage divider is configured so that the emitter cathode and the shielding electrode have a voltage difference therebetween such that an electric field generated in the housing accelerates electrons emitted by the emitter cathode to toward the target. The shielding electrode is shaped to capture the undesirable conductive particles emitted by the emitter cathode that would otherwise strike the insulator.

  • Method and System to Detect the Microcalcifications in X-Ray Images Using Nonlinear Energy Operator

    A method and system to detect the microcalcifications (MC) in different type of images viz. X-ray images/mammograms/computer tomography with varied densities using nonlinear energy operator (NEO) is disclosed to favor precise detection of early breast cancer. Such Microcalcifications are associated with both high intensity and high frequency content. The same NEO output is useful to detect and remove the irrelevant curvilinear structures (CLS) thereby helps in reducing the false alarms in micro calcification detection technique. This is effective on different dataset (scanned film, mammograms with large spatial resolution such as CR and DR) of varied breast composition (viz. dense, fatty glandular, fatty), demonstrated quantitatively by Free-response receiver operating characteristic (FROC). Importantly, the method and apparatus of the invention can be used in conjunction with machine learning techniques viz. SVM to favor detection of incipient or small microcalcifications, thus benefiting radiologists in confirming detection of micro-calcifications in X-rays images/mammograms and reducing death rates.

  • Method and System to Detect the Microcalcifications in X-Ray Images Using Nonlinear Energy Operator

    A method and system to detect the microcalcifications (MC) in different type of images viz. X-ray images/mammograms/computer tomography with varied densities using nonlinear energy operator (NEO) is disclosed to favor precise detection of early breast cancer. Such Microcalcifications are associated with both high intensity and high frequency content. The same NEO output is useful to detect and remove the irrelevant curvilinear structures (CLS) thereby helps in reducing the false alarms in micro calcification detection technique. This is effective on different dataset (scanned film, mammograms with large spatial resolution such as CR and DR) of varied breast composition (viz. dense, fatty glandular, fatty), demonstrated quantitatively by Free-response receiver operating characteristic (FROC). Importantly, the method and apparatus of the invention can be used in conjunction with machine learning techniques viz. SVM to favor detection of incipient or small microcalcifications, thus benefiting radiologists in confirming detection of micro-calcifications in X-rays images/mammograms and reducing death rates.

  • X-Ray Tomographic Inspection Systems for the Identification of Specific Target Items

    The present specification discloses an X-ray scanning system with a non-rotating X-ray scanner that generates scanning data defining a tomographic X-ray image of the object and a processor executing programmatic instructions where the executing processor analyzes the scanning data to extract at least one parameter of the tomographic X-ray image and where the processor is configured to determine if the object comprises a liquid, sharp object, narcotic, currency, nuclear materials, cigarettes or fire-arms.

  • METHODS AND APPARATUS FOR MULTI-CAMERA X-RAY FLAT PANEL DETECTOR

    According to some aspects, a device comprising a plurality of cameras arranged in an array, each of the plurality of cameras producing a signal indicative of radiation impinging on the respective camera, the plurality of cameras arranged such that the field of view of each of the plurality of cameras at least partially overlaps the field of view of at least one adjacent camera of the plurality of cameras, to form a respective plurality of overlap regions, an energy conversion component for converting first radiation impinging on a surface of the energy conversion component to second radiation at a lower energy that is detectable by the plurality of cameras, and at least one computer for processing the signals from each of the plurality cameras to generate at least one image, the at least one processor configured to combine signals in the plurality of overlap regions to form the at least one image is provided.

  • SYSTEM AND METHOD FOR IMAGE COMPRESSION IN X-RAY IMAGING SYSTEMS

    An imaging system includes an analog-to-digital converter configured to convert an analog pixel value into a first digital pixel value. The imaging system also includes an index value source configured to receive the first digital pixel value from the analog-to-digital converter and to generate a digital index value based on a comparison of the first digital pixel value to a digital reference value. In addition, the imaging system includes a transmitter in communication with the index value source and configured to transmit the digital index value. Further, the imaging system includes an image processing component configured to receive the digital index value and to generate a second digital pixel value based at least in part on the received digital index value and a lookup table of the image processing component.

  • X-RAY APPARATUS

    An X-ray apparatus includes a pixel-extracting section for extracting pixels determined in advance in each line of an image containing a grid moire pattern, a FFT processing section for performing one-dimensional FFT to the extracted pixels, a peak-frequency detecting section for detecting a peak frequency from a frequency characteristic for each line having undergone FTT, a frequency-characteristic preparing section for preparing a frequency characteristic for extracting the grid moire pattern in accordance with the detected peak-frequency, an inverse FFT processing section for performing inverse FFT to the frequency characteristic prepared by the frequency-characteristic preparing section, and an FIR filtering section for performing FIR filtering on the image with use of a value calculated by the inverse FFT processing section as an FIR filter coefficient.

  • INTRA-ORAL X-RAY IMAGING DEVICE EQUIPPED WITH CAMERA

    Provided is an intraoral X-ray imaging apparatus having a camera, including: a frame; an X-ray irradiator which is installed to be supported by the frame and of which the one end portion is inserted into the oral cavity and which irradiates X-ray through an X-ray irradiation hole formed on the one end portion inserted into the oral cavity; a camera unit which is installed at the one end portion of the X-ray irradiator to image an interior of the oral cavity; a monitor unit which is connected to a camera unit to output the image captured by the camera unit; and an X-ray detector which is arranged to be separated from the X-ray irradiator in the frame so as to detect the X-ray irradiated from the X-ray irradiator outside the oral cavity. In the intraoral X-ray imaging apparatus having a camera, since the X-ray irradiator is located inside the oral cavity, it is possible to obtain an image having a high quality with a low X-ray dose and to avoid confusion in image diagnosis by removing a ghost image. In addition, since the imaging object tooth can be accurately identified inside the oral cavity, the X-ray can be irradiated on only the imaging object tooth, so that it is possible to minimize a radiation exposure dose applied to the head of a patient.

  • CONFIGURABLE DATA MEASUREMENT AND ACQUISITION SYSTEMS FOR MULTI-SLICE X-RAY COMPUTED TOMOGRAPHY SYSTEMS

    A Data Measurement and Acquisition System (DMAS) for multi-slice X-ray CT systems and multi-slice X-ray CT systems using the DMAS are disclosed; wherein the DMAS comprises a plurality of X-ray scintillators, a plurality of photodiode modules, a plurality of digitizing cards, one or more motherboards, and an arced support structure for mounting and securing the photodiode modules, the digitizing cards, and the motherboard(s); wherein the multi-slice X-ray CT systems comprises one or more X-ray sources, and one or more DMAS.

  • X-RAY RADIOGRAPHIC APPARATUS

    Provided is an X-ray radiographic apparatus capable of accurately recognizing a position and orientation of a tip portion of an endoscope, wherein the X-ray radiographic apparatus includes a navigation processing part 70 for specifying a direction and position of an endoscope 50 and assisting an operation of the endoscope 50. This navigation processing part 70 includes: a position/direction detecting part 71 for detecting a position and direction of the tip portion of the endoscope 50; a CT image processing part 72 for processing a cone-beam CT image; and a virtual endoscopic image processing part 73 for processing a virtual endoscopic image. A coronal image, a sagittal image, an axial image, a front side radioscopic image, a lateral directional radioscopic image and a virtual endoscopic image obtained by cone-beam X-ray CT radiography are displayed in division on a monitor screen of a first monitor 30, and a real endoscopic image is displayed on a monitor screen of a second monitor 40.

  • ELECTRONIC VARIABLE GAIN FOR X-RAY DETECTOR

    An electronic circuit for processing electronic measurement data measured by an X-ray detector array being configured for detecting X-rays and having a plurality of detector pixels generating the electronic measurement data in response to X-rays propagating onto the detector array, the electronic circuit comprising a measurement data receiving interface configured for receiving the electronic measurement data from the detector pixels as analog signals, an analog gain adjustment unit configured for manipulating the analog signals in accordance with an adjustable analog gain value, and a processor for processing the electronic measurement data after the manipulation.

  • GRADIENT VACUUM FOR HIGH-FLUX X-RAY SOURCE

    An X-ray tube for generating an X-ray beam, the X-ray tube comprising a rotatably mounted anode arranged and configured to generate X-rays upon exposure to an electron beam, a hollow space within the anode, a cooling unit configured for cooling the anode by fluid circulation within the hollow space, and a vacuum pump arrangement configured for generating a first vacuum within the hollow space and a second vacuum in a space surrounding the anode, wherein the second vacuum relates to a pressure value being lower than a pressure value relating to the first vacuum, wherein the vacuum pump arrangement comprises a pump arranged for forming a continuous pressure gradient between the first vacuum and the second vacuum

  • X-RAY POSE RECOVERY

    A method, system, and program product are provided for x-ray pose recovery during an endoscopic procedure. An x-ray image is taken with a C-arm at a first pose, capturing a region of an endoscope with fiducials thereon. The C-arm is moved from the first pose to a second pose at another viewing angle while maintaining the position of the endoscope. Anotherx-ray image is taken with the C-arm at the second C-arm pose, capturing the region of the endoscope with the fiducials thereon. The location of the fiducials on each x-ray image is determined using segmentation. An iterative optimization is performed using the locations of the fiducials in the two x-ray images to form two-dimensional projections of the three dimensional curve of the region of the endoscope with fiducials thereon to determine the three-dimensional translation and rotation of the C-arm from the first x-ray pose to the second x-ray pose.