Accurate and timely traffic forecasting is an important task for the realization of urban smart traffic. The random occurrence of social events such as traffic accidents will make traffic prediction particularly difficult. At the same time, most of the existing prediction methods rely on prior knowledge to obtain traffic maps and the obtained map structure cannot be guaranteed to be accurate for the current learning task. In addition, traffic data is highly non-linear and longterm dependent, so it is more difficult to achieve accurate prediction. In response to the above problems, this paper proposes a new integrated unified architecture for traffic prediction based on heterogeneous graph attention network combined with residual-time-series convolutional network, which is called HGA-ResTCN. First, the heterogeneous graph attention is used to capture the changes in the relationship between the traffic graph nodes caused by social events, so as to learn the link weights between the target node and its neighbor nodes; at the same time, by introducing the timing of residual links convolutional network to capture the long-term dependence of complex traffic data. These two models are integrated into a unified framework to learn in an end-to-end manner. Through testing on real-world data sets, the results show that the accuracy of the model in this paper is better than other proposed baselines.
Loading....