As many countries transition to electric vehicles (EVs) to reduce tailpipe emissions from internal combustion engine vehicles (ICEVs), both vehicle types continue to generate nonexhaust particulate matter (PM), including tire wear, brake wear, road surface wear, and particularly road dust resuspension. Among these, road dust resuspension is a major contributor to non-exhaust PM. While factors such as vehicle weight and drivetrain configuration have been extensively studied in fleet-level research, direct comparisons between ICEVs and EVs of the same model have not been explored. This study investigates the effects of drivetrain, vehicle weight, and payload on road dust resuspension emissions from ICEV and EV models. Two experimental approaches were employed: (1) acceleration from 0 to 60 km/h, and (2) a simulated real-world driving cycle (RDC). Each test was conducted under both light and heavy payload conditions. The results show that the EV consistently emitted more PM than the ICEV during both acceleration and RDC tests, based on factorystandard vehicle weights. Under identical vehicle weight conditions, the EV demonstrated higher PM resuspension levels, likely due to its higher torque and more immediate power delivery, which increases friction between the tires and the road, particularly during rapid acceleration. Both vehicle types exhibited significant increases in PM emissions under heavy payload conditions. These findings underscore the importance of addressing nonexhaust emissions from EVs, particularly road dust resuspension, and highlight the need for further research into mitigation strategies, such as vehicle lightweighting.
Loading....