The optimal design of a super highspeed flywheel rotor could improve flywheel battery energy density. The improvement of flywheel battery energy density could enhance the performance of the flywheel lithium battery composite energy storage system. However, there are still many problems in the structure, material and flywheel winding of super highspeed flywheels. Therefore, in this paper, electric flywheel energy and power density parameters are designed based on CPE (Continuous Power Energy) function and vehicle dynamics. Then, according to the design index requirements, the structure, size and material of the electric flywheel rotor are designed. Furthermore, the numerical analysis model of stress and displacement of multi-ring interference fit flywheel rotor under plane stress state is established. On this basis, the influence laws of flywheel rotor wheel flange numbers and interlaminar interference on stress distribution of flywheel rotor are analyzed, and the assembly form of wheel flange is determined. Finally, the stress check of the flywheel rotor is completed. The results show that the super highspeed flywheel rotor designed in this paper meets vehicle dynamics requirements in terms of energy storage and power. In terms of strength, it meets the design requirements of static assembly stress and dynamic stress at maximum speed.
Loading....