Device-to-device (D2D) communication enhances network efficiency by enabling direct, low-latency links between nearby users or devices. While most existing research assumes that D2D connections occur with the nearest neighbor, this assumption often fails in realworld scenarios—such as dense indoor environments, smart buildings, and industrial IoT deployments—due to factors like channel variability, physical obstructions, or limited user participation. In this paper, we investigate the performance implications of connecting to the n-th nearest neighbor in a cellular network supporting underlay D2D communication. Using a stochastic geometry framework, we derive and analyze key performance metrics, including the coverage probability and average data rate, for both D2D and cellular links under proximity-aware connection strategies. Our results reveal that non-nearestneighbor associations are not only common but sometimes necessary for maintaining reliable connectivity in highly dense or constrained spaces. These findings are directly relevant to IoT-enhanced localization systems, where fallback mechanisms and adaptive pairing are essential for communication resilience. This work contributes to the development of proximity-aware and spatially adaptive D2D frameworks for next-generation smart environments and 5G-and-beyond wireless networks.
Loading....