Internet of Things (IoT) has played an important role in our daily life since its emergence. The applications of IoT cover from the traditional devices to intelligent equipment. With the great potential of IoT, there comes various kinds of security problems. In this paper, we study the malware propagation under the dynamic interaction between the attackers and defenders in edge computing-based IoT and propose an infinite-horizon stochastic differential game model to discuss the optimal strategies for the attackers and defenders. Considering the effect of stochastic fluctuations in the edge network on the malware propagation, we construct the Itˆo stochastic differential equations to describe the propagation of the malware in edge computing-based IoT. Subsequently, we analyze the feedback Nash equilibrium solutions for our proposed game model, which can be considered as the optimal strategies for the defenders and attackers. Finally, numerical simulations show the effectiveness of our proposed game model.
Loading....