Climate change amplifies heat wave effects on outdoor thermal comfort by increasing their frequency, duration, and intensity. The urban heat island effect worsens heat risks in cities and impacts resilience. Nature-based solution (NBS) with tree plantation was reported as an effective mitigation measure. This simulation study, by the well-validated ENVI-met model, aimed to investigate the impact of different tree planting strategies and building parameters on urban heat risk mitigation and microclimate during a typical hot summer day. Hypothetical skyscrapers and super high-rise buildings were assumed in the study site located in southern China. Adopting meteorological inputs from a typical year, the simulation results revealed that both mean radiant temperature (Tmrt) and physiological equivalent temperature (PET) were elevated (Tmrt > 60 ◦C and PET > 50 ◦C) in early afternoon in sunlit areas. Three mitigation approaches with different tree planting locations were investigated. While all approaches demonstrated effective cooling (PET down to <35 ◦C) in the proximity of trees, a superior approach for mitigating the heat risks was not evident. Within the building array, the shade of bulky structures also lowered Tmrt and PET to a thermally comfortable level in the late afternoon. Combining open-space tree planting with optimized building designs is recommended to mitigate heat risks and enhance urban resilience while promoting outdoor activities and their health benefits.
Loading....