The accurate prediction of the point-ahead angle (PAA) is crucial for applications of intersatellite laser links (ISLLs), especially laser ranging and continuous communication. Herein, a real-time and high-precision point-ahead-angle algorithm is presented; the principle of the algorithm is mathematically characterized, and its performance is simulated and verified using typical on-orbit scenarios. The maximum PAAs of a typical geosynchronous equatorial orbit (GEO)–GEO link and low Earth orbit (LEO)–GEO link were simulated with this algorithm, and the results are consistent with those of typical calculation methods, proving the algorithm’s accuracy. The performance of the proposed algorithm was verified using a practical engineering application of ISLLs, where it was used to calculate the pointahead angle during stable on-orbit communication. The Pearson correlations between the curves of azimuth, elevation, and total point-ahead angles, and the actual experimental data are 99.91%, 52.32%, and 98.01%, respectively. The corresponding average deviations are −5.8510 nrad, −1.0945 nrad, and −79.5403 nrad, respectively. The maximum calculation error is 5.2103%, and the calculation accuracy exceeds 94%. The above results show that the algorithm produces results that closely match actual on-orbit experimental data with high calculation accuracy, enabling the accurate prediction of the point-ahead angle and the improvement of ISLL stability. Additionally, with this method, the measurement error of the laser ranging is smaller than 50 μm, further enhancing the accuracy of precision measurements based on ISLLs.
Loading....