The simplest way of building a look-up table (LUT) for the retrieval of cloud microphysical properties is to use a standard atmospheric profile and vertically uniform cloud microphysics. Such an assumption has been demonstrated to be incoherent with in-cloud observations. This paper aims to show the effect of some atmospheric conditions associated with fog as well as its macro-and microstructure on brightness temperature (BT) for the MSG/ SEVIRI satellite using libRadtran. The sensitivity tests were performed by gradually changing some features from the initial data, such as cloud cover, total water vapor column, thermal inversion intensity, fog depth, fog microstructure, and others. The results revealed that some variables can cause significant variations on BT and, consequently, discrepancies in the retrieval of fog microphysical properties. Also, a variation as high as 0.5˚C was found on BT just by switching uniform to the non-uniform profile of fog microphysics depending on the channel, the droplet size, and optical thickness.
Loading....