When a longitudinal wave passes through a contact interface, second harmonic components are generated due to contact acoustic nonlinearity (CAN). The magnitude of the generated second harmonic is related to the contact state of the interface, of which a model has been developed using linear and nonlinear interfacial stiffness. However, this model has not been sufficiently verified experimentally for the case where the interface has a rough surface. The present study verifies this model through experiments using rough interfaces. To do this, four sets of specimens with different interface roughness values (Ra = 0.179 to 4.524 m) were tested; one set consists of two Al6061-T6 blocks facing each other. The second harmonic component of the transmitted signal was analyzed while pressing on both sides of the specimen set to change the contact state of the interface. The experimental results showed good agreement with the theoretical prediction on the rough interface. The magnitude of the second harmonic was maximized at a specific contact pressure. As the roughness of the contact surface increased, the second harmonic was maximized at a higher contact pressure. The location of this maximal point was consistent between experiments and theory. In this study, an FEM simulation was conducted in parallel and showed good agreement with the theoretical results. Thus, the developed FEM model allows parametric studies on various states of contact interfaces.
Loading....