During rock failure and instability, cracks usually appear as microcracks in local areas and then expand into significant macroscopic cracks. In this study, the whole process of rock deformation and instability under uniaxial loading is investigated with standard rock specimens, and acoustic emission (AE) and digital image correlation (DIC) technology are introduced to explore the process of rock failure and instability. AE technology is used to identify the location of crack propagation caused by microcracks and large cracks, and DIC is used to measure the crack propagation at different locations. Results show that the evolution of accumulated energy is closely related to the change in stress. When the specimen approaches failure, a “y” shaped localization zone is formed, and the evolution path is consistent with the through-through path of the crack, which better reflects the propagation law of the crack in the rock. The spatial distribution of the AE location event and energy density is consistent with the evolution path of the localization zone. The deformation value of the deformation field is closely related to the initiation and evolution of the deformation localization zone. On the basis of density-based spatial clustering of applications with a noise-clustering algorithm, AE positioning events are further processed and projected into the digital image of the deformation field, and the results of clustering projection are in good agreement with the deformation localization zone. Results show that AE and DIC coupling localization techniques can effectively identify the fracture process zone and fracture mechanism of rock, providing a new technical means for further studying the mechanical properties of rock materials.
Loading....