A dual-sidestay landing gear is prone to locking failure in the deployed state due to the restriction of movement between two sidestays. However, the principle of its locking movement still remains unclear. The present study is aimed at investigating the synchronous locking performance of the dual-sidestay landing gear based on the singularity and bifurcation theory. From the perspective of the kinematic mechanism, the reason for high sensitivity to structural dimensions in the locking process is explained, and the locked position is investigated by employing the numerical continuation method in the case of a singlesidestay landing gear. Afterwards, the reason for the locking failure of the dual-sidestay landing gear is analyzed, and a kinematic optimization method for the synchronous locking is proposed. The results reveal that the lock links must reach the lower overcenter singular point to fully lock the landing gear, and the singular point is sensitively affected by structural parameters. Owing to the different positions of singular points, the movements of fore and aft sidestays seriously restrict each other, causing locking failure of the dual-sidestay landing gear. The singular points of two sidestays can be optimized to be approximately identical, making their movements more coordinated.
Loading....