Titania nanoparticles have been prepared from the precursor compound Ti(OiPr)4 using Triton X reverse micelles with varying surfactant tail, in a matrix-free aqueous (pH 2) and in non-aqueous phase (benzyl alcohol and glacial acetic acid, solvothermal method). The importance of this work lies in the further elucidation in the synthetic methodology of preparing well-characterized nanoporous solids. Comparison of the texture characteristics and surface properties of the samples prepared from each technique, was carried out using physicochemical techniques: pXRD, ΒΕΤ/DFT/BJH, FTIR, DRUV-Vis and SEM. The results show that the use of Triton X reverse micelles with varying surfactant size results in TiO2 solids with adjustable surface characteristics in contrast to matrix-free. Specifically, samples of the latter methods present higher surface area values at lower calcination temperatures but present reduced thermal stability and control of their surface properties.
Loading....