To address the building settlement issues induced by an urban geological hazard in a northern city, this study utilizes settlement monitoring data from 16 high-rise buildings. The non-uniform temporal data were processed using the Akima interpolation method to construct a settlement prediction model based on a backpropagation (BP) neural network. The model’s predictive performance was validated against traditional approaches, including the hyperbolic and exponential curve methods, and was further employed to estimate the stabilization time of building settlements. Additionally, spatiotemporal characteristics of settlement behavior under the influence of geological hazards were investigated through a comparative analysis of deformation data across the building group. The results demonstrate that the BP neural network model achieves a 58.3% improvement in predictive accuracy compared to traditional empirical methods, effectively capturing the settlement evolution of buildings. The model also provides reliable predictions for the time required for buildings to reach a stable state. The temporal evolution of building settlement exhibits a distinct three-stage pattern: (1) an initial abrupt phase dominated by rapid water and soil loss; (2) a rapid settlement phase primarily driven by the consolidation of sandy and clayey soils; and (3) a slow consolidation phase governed by the prolonged consolidation of cohesive soils. Spatially, building deformations show significant regional heterogeneity, and the existence of potential finger-like preferential pathways for water and soil loss appears to exert a substantial influence on differential settlements.
Loading....