The pleiotropic effect of hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) is responsible for potent defense against inflammatory response. This study evaluated the inhibitory effects of HMG-CoA reductase inhibitors on the monosodium urate (MSU)-induced inflammatory response through the regulation of interleukin-37 (IL-37) expression. Methods: Serum was collected from patients with gout (n = 40) and from healthy controls (n = 30). The mRNA and protein expression of the target molecules IL-1β, IL-37, caspase-1, and Smad3 were measured in THP-1 macrophages stimulated with MSU, atorvastatin, or rosuvastatin using a real-time quantitative polymerase chain reaction and Western blot assay. Transfection with IL-1β or Smad3 siRNA in THP-1 macrophages was used to verify the pharmaceutical effect of statins in uric-acidinduced inflammation. Results: Serum IL-37 levels in gout patients were significantly higher than in controls (p < 0.001) and was associated with the serum uric acid level (r = 0.382, p = 0.008). THP-1 cells stimulated with MSU markedly induced IL-37 mRNA expression and the transition of IL-37 from the cytoplasm to the nucleus. Recombinant IL-37 treatment dose-dependently inhibited activation of caspase-1 and IL-1β in MSU-induced inflammation. Atorvastatin and rosuvastatin attenuated caspase-1 activation and mature IL-1β expression but augmented translocation of IL-37 from the cytoplasm to the nucleus. Atorvastatin and rosuvastatin induced phosphorylation of Smad3 in THP-1 cells treated with MSU crystals. Statins potently attenuated translocation of IL-37 from the cytoplasm to the nucleus in THP-1 macrophages transfected with Smad3 siRNA compared to cells with negative control siRNA. Conclusions: This study revealed that statins inhibit the MSU-induced inflammatory response through phosphorylated Smad3-mediated IL-37 expression in THP-1 macrophages.
Loading....