This article deals with a numerical approach based on the symmetric space-time Chebyshev\nspectral collocation method for solving different types of Burgers equations with Dirichlet boundary\nconditions. In this method, the variables of the equation are first approximated by interpolating\npolynomials and then discretized at the Chebyshevâ??Gaussâ??Lobatto points. Thus, we get a system of\nalgebraic equations whose solution is the set of unknown coefficients of the approximate solution of\nthe main problem. We investigate the convergence of the suggested numerical scheme and compare\nthe proposed method with several recent approaches through examining some test problems.
Loading....