The challenge regarding the output voltage regulation control of quasi-resonant converters while concurrently fulfilling zero-current switching is addressed in this study. In particular, an alternative to the usual practice of considering fixed duty cycle operation is presented to deal with the narrow robustness margin against load variations exhibited by this condition. The main contribution was the introduction of an additional block in the control loop that implements a new linear relationship between the duty cycle and the switching frequency in terms of the load current. This block proportionally modifies the duty cycle with the switching frequency that, as usual, is used to regulate the output voltage. The structure of the contribution was obtained by exploiting the knowledge of the differential equations that describe the dynamical behavior of the topology. Although it was shown that this modification could be used regardless of the control scheme implemented for the operation of the converter, its usefulness was illustrated by presenting a modified implementation of a classical PI control scheme. It was shown via numerical evaluations that the robustness of the converter under classical PI control was drastically improved for both increases and decreases in the load value. From the implementation perspective, this contribution is attractive since it exhibits a simple structure and neither requires the use of auxiliary switches nor increases the cost of current solutions.
Loading....