This paper presents a proportional–integral (PI) control-based charging strategy that introduces a ripple component into the constant-current (CC) charging profile to regulate battery temperature and improve long-term performance. The proposed method is implemented within an on-board charger (OBC), where the ripple amplitude is adaptively adjusted based on battery temperature and internal resistance. While most prior studies focus on electrochemical characteristics, this work highlights the importance of analyzing current profiles from a power electronics and converter control perspective. The ripple magnitude is controlled in real time through gain tuning of the PI current controller, allowing temperature-aware charging. To validate the proposed method, experiments were conducted using a 11 kW OBC system and 70 Ah lithium-ion battery to examine the correlation between ripple amplitude and battery temperature rise, as well as its impact on internal resistance. The control strategy was evaluated under various thermal conditions and shown to be effective in mitigating temperature-related degradation through ripple-based modulation.
Loading....