Currently, deepfake detection has garnered widespread attention as a key defense mechanism against the misuse of deepfake technology. However, existing deepfake detection networks still face challenges such as insufficient robustness, limited generalization capabilities, and a single feature extraction domain (e.g., using only spatial domain features) when confronted with evolving algorithms or diverse datasets, which severely limits their application capabilities. To address these issues, this study proposes a deepfake detection network named EFIMD-Net, which enhances performance by strengthening feature interaction and integrating spatial and frequency domain features. The proposed network integrates a Cross-feature Interaction Enhancement module (CFIE) based on cosine similarity, which achieves adaptive interaction between spatial domain features (RGB stream) and frequency domain features (SRM, Spatial Rich Model stream) through a channel attention mechanism, effectively fusing macro-semantic information with high-frequency artifact information. Additionally, an Enhanced Multi-scale Feature Fusion (EMFF) module is proposed, which effectively integrates multi-scale feature information from various layers of the network through adaptive feature enhancement and reorganization techniques. Experimental results show that compared to the baseline network Xception, EFIMD-Net achieves comparable or even better Area Under the Curve (AUC) on multiple datasets. Ablation experiments also validate the effectiveness of the proposed modules. Furthermore, compared to the baseline traditional two-stream network Locate and Verify, EFIMD-Net significantly improves forgery detection performance, with a 9-percentage-point increase in Area Under the Curve on the CelebDF-v1 dataset and a 7-percentage-point increase on the CelebDF-v2 dataset. These results fully demonstrate the effectiveness and generalization of EFIMD-Net in forgery detection. Potential limitations regarding real-time processing efficiency are acknowledged.
Loading....