Human motion gesture recognition is the most challenging research direction in the field of computer vision, and it is widely used in human-computer interaction, intelligent monitoring, virtual reality, human behaviour analysis, and other fields. This paper proposes a new type of deep convolutional generation confrontation network to recognize human motion pose. This method uses a deep convolutional stacked hourglass network to accurately extract the location of key joint points on the image. The generation and identification part of the network is designed to encode the first hierarchy (parent) and the second hierarchy (child) and show the spatial relationship of human body parts.....
Loading....