Our research focused on creating an advanced machine-learning algorithm that accurately detects anomalies in chest X-ray images to provide healthcare professionals with a reliable tool for diagnosing various lung conditions. To achieve this, we analysed a vast collection of X-ray images and utilised sophisticated visual analysis techniques; such as deep learning (DL) algorithms, object recognition, and categorisation models. To create our model, we used a large training dataset of chest X-rays, which provided valuable information for visualising and categorising abnormalities. We also utilised various data augmentation methods; such as scaling, rotation, and imitation; to increase the diversity of images used for training. We adopted the widely used You Only Look Once (YOLO) v8 algorithm, an object recognition paradigm that has demonstrated positive outcomes in computer vision applications, and modified it to classify X-ray images into distinct categories; such as respiratory infections, tuberculosis (TB), and lung nodules. It was particularly effective in identifying unique and crucial outcomes that may, otherwise, be difficult to detect using traditional diagnostic methods. Our findings demonstrate that healthcare practitioners can reliably use machine learning (ML) algorithms to diagnose various lung disorders with greater accuracy and efficiency.
Loading....