A domestic microwave oven (1000?W) was modified to permit the continuous flow of liquids run through a helical coil centrally located inside the oven cavity. Heating characteristics were evaluated by measuring inlet and outlet temperatures of coil as a function of system variables. The influence of number of turns, coil diameter, tube diameter, pitch and initial temperature were evaluated at different flow rates. The average residence time of water was computed by dividing the coil volume by the volumetric flow rate. The influence of Dean number was evaluated. Results from this study showed that (1) higher number of turns resulted in lower heating rate, lower temperature fluctuations, higher exit temperature and longer time to achieve temperature equilibrium; (2) larger tube or coil diameter gave larger coil volume causing the heating rate to decrease; (3) faster flow rates resulted in lower exit temperatures, lower temperature fluctuation, higher Dean number and slightly higher heating rate; (4) higher initial temperatures resulted in higher exit temperatures; (5) higher Dean number resulted in more uniform heating and slightly higher heating rate. Overall, the coil volume was the more dominant factor affecting heating rate as compared with flow rate and Dean number.
Loading....