Burner rigs are routinely used to qualify materials for gas turbine applications. The most useful rig tests are those that can replicate, often in an accelerated manner, the degradation that materials experience in the engine. Computational fluid dynamics (CFD) can be used to accelerate the successful development and continuous improvement of combustion burner rigs for meaningful materials testing. Rig development is typically an iterative process of making incremental modifications to improve the rig performance for testing requirements. Application of CFD allows many of these iterations to be done computationally before hardware is built or modified, reducing overall testing costs and time, and it can provide an improved understanding of how these rigs operate. This paper describes the use of CFD to develop burner test rigs for studying erosion and large-particle damage of thermal barrier coatings (TBCs) used to protect turbine blades from high heat fluxes in combustion engines. The steps used in this studyââ?¬â?determining the questions that need to be answered regarding the test rig performance, developing and validating the model, and using it to predict rig performanceââ?¬â?can be applied to the efficient development of other test rigs.
Loading....