A time-differential (TD) Brillouin optical correlation domain analysis (BOCDA) sensor system was applied to measure the Brillouin gain spectrum of a 1 km long sensing optical fiber. The optical delay line used in all BOCDA measurement systems was eliminated in the TD-BOCDA system by using a bit-delayed modulation relationship between the probe and pump lightwaves. These lightwaves were phase modulated using 216-1 pseudo-random binary sequence codes at 5 Gbps. A 2 cm dispersion-shifted fiber placed at the end of the 1 km optical fiber was distinctly identified by the Brillouin frequency extracted from the Brillouin gain spectrum measurement. To investigate the measurement stability of the TD-BOCDA system, experiments were conducted under two different pumping conditions. A semiconductor optical amplifier (SOA) and an intensity modulator (MOD) were compared for the pump chopper used in the TD-BOCDA system to detect the extinction ratio of the pump and the resulting noise in the Brillouin gain measurement. The stability of the Brillouin frequency measurement from the Brillouin gain spectrum in the TD-BOCDA system was investigated by increasing the average value of the measurement using either the SOA or MOD. The repeatedmeasurement deviation of the system with the SOA was only half of the deviation observed in the system with the MOD. The performance of TD-BOCDA is equivalent to or better than that of conventional BOCDAs in terms of measurement reliability. Moreover, TD-BOCDA is free from the drawbacks of traditional BOCDA, which uses time-delayed fibers and varies the bit rates.
Loading....