Current Issue : January-March Volume : 2025 Issue Number : 1 Articles : 5 Articles
In recent years, two-dimensional (2D) materials have been widely used for various applications due to their low cost, high charge carrier mobility, and tunable electronic structure. Here, in this study, we present the application of molybdenum disulfide (MoS2) used as a hole transport layer (HTL) material for fullerene (FA) and non-fullerene (NFA)-based organic photovoltaic (OPV) devices. A numerical simulation is carried out for these types of solar cells, and the SCAPS-1D software tool is used. Our study is specifically focused on the impact of thickness, the optimization of interface engineering, and the effect of high-temperature analysis to improve the output characteristics. The influence of interface defects between the HTL/active layer and the active layer/ETL (electron transport layer) is also contemplated. After optimization, the obtained power conversion efficiency (PCE) of these NFA- and FA-based devices is reported as 16.38% and 9.36%, respectively. A reflection coating study is also carried out to improve the power conversion efficiency of these devices. Here, the presented results demonstrate that molybdenum disulfide (MoS2) as a 2D material can be successfully used as an HTL material for high-efficiency OPV devices, both for fullerene (FA)- and non-fullerene (NFA)-based solar cells....
The high availability of solar energy in the Gulf Cooperation Council (GCC) makes it the most attractive source of energy in this region, especially due to the global shift toward eco-friendly systems. A significant increase in the implementation of solar PV projects has been noticed in the United Arab Emirates (UAE). For this reason, this study conducted a multi-criteria decision-making process to compare four locations for building a solar PV park in the UAE, namely, Abu Dhabi, Dubai, Sharjah, and Umm Al Quwain. Various criteria were taken into account, including the solar radiation, wind speed, distance from the electricity grid, distance from seaports, and land cost. A hybrid AHP-TOPSIS model was employed to evaluate the criteria weights and alternatives’ scores, which were also compared with the no priority-TOPSIS to check the effects of the criteria weights on the overall ranking. According to the findings, Dubai and Abu Dhabi were ranked first and second, with final scores of 0.7108 and 0.4427, respectively, when using the AHP-TOPSIS model. Furthermore, Umm Al Quwain scored slightly less than that of second place, with a value of 0.4252. The top two ranked alternatives were consistent between the two compared models, as Dubai also performed the best among all locations, which confirmed the reliability of the proposed approach and verified the obtained results and rankings....
Ghana, being blessed with abundant solar resources, has strategically invested in solar photovoltaic (PV) technologies to diversify its energy mix and reduce the environmental impacts of traditional energy technologies. The 50 MW solar PV installation by the Bui Power Authority (BPA) exemplifies the nation’s dedication to utilizing clean energy for sustainable growth. This study seeks to close the knowledge gap by providing a detailed analysis of the system’s performance under different weather conditions, particularly on days with abundant sunshine and those with cloudy skies. The research consists of one year’s worth of monitoring data for the climatic conditions at the facility and AC energy output fed into the grid. These data were used to analyze PV performance on each month’s sunniest and cloudiest days. The goal is to aid in predicting the system’s output over the next 365 days based on the system design and weather forecast and identify opportunities for system optimization to improve grid dependability. The results show that the total amount of AC energy output fed into the grid each month on the sunniest day varies between 229.3 MWh in December and 278.0 MWh in November, while the total amount of AC energy output fed into the grid each month on the cloudiest day varies between 16.1 MWh in August and 192.8 MWh in February. Also, the percentage variation in energy produced between the sunniest and cloudiest days within a month ranges from 16.9% (December) to 94.1% (August). The reference and system yield analyses showed that the PV plant has a high conversion efficiency of 91.3%; however, only the sunniest and overcast days had an efficiency of 38% and 92%, respectively. The BPA plant’s performance can be enhanced by using this analysis to identify erratic power generation on sunny days and schedule timely maintenance to keep the plant’s performance from deteriorating. Optimizing a solar PV system’s design, installation, and operation can significantly improve its AC energy output, performance ratio, and capacity factor on sunny and cloudy days. The study reveals the necessity of hydropower backup during cloudy days, enabling BPA to calculate the required hydropower for a consistent grid supply. Being able to predict the daily output of the system allows BPA to optimize dispatch strategies and determine the most efficient mix of solar and hydropower. It also assists BPA in identifying areas of the solar facility that require optimization to improve grid reliability....
Wide-bandgap (WBG) perovskite has demonstrated great potential in perovskite-based tandem solar cells. The power conversion efficiency (PCE) of such devices has surpassed 34%, signifying a new era for renewable energy development. However, the ion migration reduces the stability and hinders the commercialization, which is yet to be resolved despite many attempts. A big step forward has now been achieved by the simulation method. The detailed thermodynamics and kinetics of the migration process have been revealed for the first time. The stability has been enhanced by more than 100% via the heterojunction layer on top of the WBG perovskite film, which provided extra bonding for kinetic protection. Hopefully, these discoveries will open a new gate for WBG perovskite research and accelerate the application of perovskite-based tandem solar cells....
Perovskite solar cells (PSCs) are considered the most promising photovoltaic devices to replace silicon-based solar cells because of their low preparation cost and high photoelectric conversion efficiency (PCE). Reducing defects in perovskite films is an effective means to improve the efficiency of PSCs. In this paper, a lead chelator was selected and mixed into hole transport layers (HTLs) to design and prepare mesoporous PSCs with the structure of ITO/PTAA(BCP)/Al2O3/PVK/PCBM/BCP/Ag, and its modification effect on the buried interface at the bottom of the perovskite layer in the mesoporous structure was explored. The experimental results show that in the presence of mesoporous alumina, the lead chelator can still play a role in modifying the bottom of the perovskite film. The use of lead chelator as passivation material added to the HTL can effectively reduce the residue of dimethyl sulfoxide (DMSO) and decrease the defects at the bottom of the perovskite film, which dramatically improves the device performance. The PCE of the device is increased from 18.03% to 20.78%, which is an increase of 15%. The work in this paper provides an effective method to enhance the performance of PSCs....
Loading....