Current Issue : October-December Volume : 2024 Issue Number : 4 Articles : 5 Articles
This study presents significant advancements in passive radiative cooling (PRC), achieved using assembled hollow yttrium oxide spherical particles (AHYOSPs). We developed PRC films with enhanced optical properties by synthesizing micro-sized hollow Y2O3 particles and integrating them into a polydimethylsiloxane (PDMS) matrix. The findings revealed that AHYOSPs achieved a remarkable solar reflectance of 73.72% and an emissivity of 91.75%, significantly outperforming nano-sized yttrium oxide (NYO) and baseline PDMS. Field tests demonstrated that the AHYOSPs maintained their lowest temperature during daylight, confirming their superior cooling efficiency. Additionally, theoretical calculations using MATLAB indicated that the cooling capacity of AHYOSPs reached 103.77 W/m2, representing a substantial improvement over NYO and robustly validating the proposed nanoparticle assembly strategy. These results highlight the potential of structurally controlled particles to revolutionize PRC technologies, thereby offering a path toward more energy-efficient and environmentally friendly cooling solutions....
The development of innovative heterostructures made of ZnO nanowires is of great interest for enhancing the performances of many devices in the fields of optoelectronics, photovoltaics, and energy harvesting. We report an original fabrication process to form ZnO/ZnGa2O4 core– shell nanowire heterostructures in the framework of the wet chemistry techniques. The process involves the partial chemical conversion of ZnO nanowires grown via chemical bath deposition into ZnO/ZnGa2O4 core–shell nanowire heterostructures with a high interface quality following their immersion in an aqueous solution containing gallium nitrate heated at a low temperature. The double-step process describing the partial chemical conversion relies on successive dissolution and reaction mechanisms. The present finding offers the possibility to fabricate ZnO/ZnGa2O4 core–shell nanowire heterostructures at low temperatures and over a wide variety of substrates with a large surface area, which is attractive for nanostructured solar cells, deep-UV photodetectors, and piezoelectric devices....
We investigated the electronic structure of Mg-, Si-, and Zn-doped four-faceted [001]- and [110]-oriented SnO2 nanowires using first-principles calculations based on the linear combination of atomic orbitals (LCAO) method. This approach, employing atomic-centered Gaussian-type functions as a basis set, was combined with hybrid density functional theory (DFT). Our results show qualitative agreement in predicting the formation of stable point defects due to atom substitutions on the surface of the SnO2 nanowire. Doping induces substantial atomic relaxation in the nanowires, changes in the covalency of the dopant–oxygen bond, and additional charge redistribution between the dopant and nanowire. Furthermore, our calculations reveal a narrowing of the band gap resulting from the emergence of midgap states induced by the incorporated defects. This study provides insights into the altered electronic properties caused by Mg, Si, and Zn doping, contributing to the further design of SnO2 nanowires for advanced electronic, optoelectronic, photovoltaic, and photocatalytic applications....
The beetle, of the order Coleoptera, possesses outstanding flight capabilities. After completing flight, they can fold their hindwings under the elytra and swiftly unfold them again when they take off. This sophisticated hindwing structure is a result of biological evolution, showcasing the strong environmental adaptability of this species. The beetle’s hindwings can provide biomimetic inspiration for the design of flapping-wing micro air vehicles (FWMAVs). In this study, the Asian ladybird (Harmonia axyridis Pallas) was chosen as the bionic research object. Various kinematic parameters of its flapping flight were analyzed, including the flight characteristics of the hindwings, wing tip motion trajectories, and aerodynamic characteristics. Based on these results, a flapping kinematic model of the Asian ladybird was established. Then, three bionic deployable wing models were designed and their structural mechanical properties were analyzed. The results show that the structure of wing vein bars determined the mechanical properties of the bionic wing. This study can provide a theoretical basis and technical reference for further bionic wing design....
Flexible screen possessing a high-contrast ratio to accomplish high-definition display can be attributed to the accuracy of polarizer assembly. Different from the existing polarizer attached onto a flexible screen, resulting in low-accuracy and nonalignment attaching behaviors, a unique approach of underactuated bionic scorpion robot arms can be developed to explore the stable capture and accurate alignment motion operations. Overall structure design and D–H kinematic simulation of bionic scorpion robot arm can be conducted to analyze virtual three-key typical motions. Motion optimization of structural parameters and corresponding motion workspaces verification can be adopted to evaluate motion range and ability. Experiments can be utilized to verify the rationality of theoretical modeling and optimization simulation of bionic scorpion robot arm. Experimental results illustrate that it is evident to demonstrate that the motion behaviors of bionic scorpion robot arm can be verified to be consistent with three key states of virtual theoretical motions. The key joints possessing minor errors may also be utilized to illustrate the relatively excellent dynamic motions existing in bionic scorpion robot arm. Further, advancing the stable motion behaviors of bionic scorpion robot arm may solve the problems of low-accuracy and misalignment polarizer attachments....
Loading....