Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
This study examines the characteristic parameters required for non-circular-hole microperforated panels (MPPs) to achieve sound absorption performance comparable to that of conventional circular-hole MPPs. Through numerical analysis, the flow resistivity and perforation ratio were found to be key parameters influencing the absorption characteristics of MPPs with square and equilateral triangular holes. The results indicate that for square-hole MPPs, matching either the flow resistivity alone or both the flow resistivity and perforation ratio to those of circular-hole MPPs leads to similar sound absorption characteristics. In contrast, for equilateral triangular-hole MPPs, both the above parameters must be matched to ensure comparable performance. Furthermore, this study explores MPPs incorporating a combination of circular and non-circular holes. It was confirmed that by appropriately matching the flow resistivity and perforation ratio, such mixed-hole MPPs can achieve sound absorption characteristics similar to those of MPPs composed solely of circular holes. These findings contribute to the broader design possibilities of MPPs, providing a foundation for optimising hole geometries in practical applications where manufacturing constraints or aesthetic considerations may necessitate non-circular hole patterns....
To address the demand of equivalent self-noise suppression in a distributed hydroacoustic sensing system, this study proposes a method to enhance the acoustic sensitivity and signal-to-noise ratio (SNR) using space division multiplexed (SDM) technology based on multi-core fiber (MCF). Specifically, a dual-channel demodulation system for distributed acoustic sensing is designed using MCF. The responses of different cores in MCF are almost consistent under external acoustic pressure, while their self-noise is inconsistent. Accordingly, the acoustic pressure phase sensitivity (APPS) and SNR gain based on the accumulation of dual-channel signals are analyzed, which are verified by experiments. It is shown that the self-noise correlation coefficient between the two cores is 0.11, increasing the noise power by 3.46 dB. The APPS is increased by 5.97 dB re 1 rad/μPa after the accumulation of two-core signals, which is close to the theoretical value (6 dB). The equivalent self-noise is reduced by 2.54 dB. The experimental results reveal that the enhancement of acoustic pressure phase shift sensitivity and SNR can be achieved by the space division multiplexing (SDM) of multi-core signals, which is of great significance for suppressing the equivalent self-noise of the system and realizing the acoustic pressure detection of weak underwater signals....
To achieve the goal of climate neutrality set by the European Union, it is important to find an efficient strategy to simultaneously lower nitrogen oxide, carbon monoxide, and particle emissions. When a portion of exhaust gas is reintroduced back into the combustion chamber, it reduces the combustion temperature. This reduces NOX emissions but has a negative impact on CO and particle emissions due to the lower concentration of O2. Reducing the combustion temperature can also indirectly influence particle formation. By including an oxygen-rich alternative fuel, CO emissions are reduced by 28% and 33% at 60 and 90 Nm, respectively. To further reduce particle emissions, which have significant health risks, acoustic waves are introduced to achieve better filtration through conventional DPFs that filter particles with larger diameters. With 21 kHz of acoustic frequency and 0% EGR, a 6% increase in large particles is observed. With moderate rise in the recirculation percentage, a higher combined efficiency of EGR and acoustic waves is observed. With 21 kHz acoustic frequency and 10% EGR, a 73% increase in larger particles is observed at lower loads and a 32% increase at higher loads is observed. Simultaneous emission reduction can be achieved by combining the benefits of using oxygen-rich fuel, acoustics, and EGR at a moderate rate....
Acoustic spiral wavefronts demonstrate linear phase directionality, facilitating precise azimuth estimation in underwater navigation through phase comparison with reference wavefronts characterized by constant phase directionality. The reliability of azimuth estimation depends on the phase directionality accuracy of both the spiral and reference wavefront sources. This study introduces a seven-element transmitting array, constructed using bender disk transducers, which is capable of generating both spiral and reference acoustic wavefronts with minimal phase directionality error. The array design was developed and evaluated using a point source array model and numerical simulations, followed by physical fabrication. To address the sensitivity of the phase–azimuth linearity to manufacturing imperfections in sound sources, a phase error compensation technique was implemented by adjusting the input signal parameters to the acoustic emitters. Experimental validation was conducted in an anechoic water tank, where both spiral and reference wavefronts were transmitted across multiple frequencies. The results reveal that the array prototype achieved sub-degree-level compensated phase directionality accuracy for both wavefront types at all the tested frequencies. Notably, at the resonance frequency of 7.3 kHz, the root-mean-square phase directionality error of the spiral wavefront was reduced to as low as 0.19◦....
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role in supporting urban biodiversity. In this case study, acoustic monitoring was conducted over the course of a full year to objectively reveal the ecological patterns across temporal scales of the campus sound environment, by combining acoustic indices’ visualization combined with statistical analysis. The findings indicate (1) the existence of ecological sound patterns across different temporal scales, closely associated with phenological cycles; (2) the identification of the specific timing affected by the different species‘ activities, such as the breeding season of birds, the chirping time of cicadas and other insects, as well as the fluctuations in the intensity of human activities, and (3) the development of a methodological framework integrating a visualization technique with statistical analysis to enhance the understanding of long-term ecological dynamics. The results offer a foundation for promoting the sustainable conservation of campus biodiversity in high-density urban settings....
Loading....