Current Issue : October - December Volume : 2011 Issue Number : 1 Articles : 8 Articles
Background\nMany nephrology observational studies use renal registries, which have well known limitations. The Canadian Kidney Disease Cohort Study (CKDCS) is a large prospective observational study of patients commencing hemodialysis in five Canadian centers. This study focuses on delineating potentially reversible determinants of adverse outcomes that occur in patients receiving dialysis for end-stage renal disease (ESRD).\n\nMethods/Design\nThe CKDCS collects information on risk factors and outcomes, and stores specimens (blood, dialysate, hair and fingernails) at baseline and in long-term follow-up. Such specimens will permit measurements of biochemical markers, proteomic and genetic parameters (proteins and DNA) not measured in routine care. To avoid selection bias, all consenting incident hemodialysis patients at participating centers are enrolled, the large sample size (target of 1500 patients), large number of exposures, and high event rates will permit the exploration of multiple potential research questions.\n\nPreliminary Results\nData on the baseline characteristics from the first 1074 subjects showed that the average age of patients was 62 (range; 50-73) years. The leading cause of ESRD was diabetic nephropathy (41.9%), and the majority of the patients were white (80.0%). Only 18.7% of the subjects received dialysis in a satellite unit, and over 80% lived within a 50 km radius of the nearest nephrologist's practice.\n\nDiscussion\nThe prospective design, detailed clinical information, and stored biological specimens provide a wealth of information with potential to greatly enhance our understanding of risk factors for adverse outcomes in dialysis patients. The scientific value of the stored patient tissue will grow as new genetic and biochemical markers are discovered in the future....
Background\nExtracorporeal lung assist devices are increasingly used in the intensive care unit setting to improve extracorporeal gas exchange mainly in patients with acute respiratory distress syndrome. ARDS is frequently accompanied by acute kidney injury; however it is so far unknown how the combination of these two conditions affects long term survival of critically ill patients.\n\nMethods\nIn a retrospective analysis of a tertiary care hospital we evaluated all patients undergoing interventional lung assist (iLA) treatment between January 1st 2005 and December 31st 2009. Data from all 61 patients (31 F/30 M), median age 40 (28 to 52) years were obtained by chart review. Follow up data up to one year were obtained.\n\nResults\nOf the 61 patients undergoing iLA membrane ventilator treatment 21 patients had acute kidney injury network (AKIN) stage 3 and were treated by extended dialysis (ED). Twenty-eight day survival of all patients was 33%. While patients without ED showed a 28 day survival of 40%, the survival of patients with ED was only 19%. Patients on ED were not different in respect to age, weight, Horowitz index and underlying disease.\n\nConclusions\nAKI requiring ED therapy in patients undergoing iLA treatment increases mortality in ICU patients. Patients in whom iLA was placed as a bridge to lung transplantation and that were successfully transplanted showed the best outcome. Future studies have to clarify whether it is possible to identify patients that truly benefit from the combination of these two extracorporeal treatment methods....
Background\nFew studies have defined alternate pathways by which chronic kidney disease (CKD) patients transition into end-stage renal disease (ESRD).\n\nMethods\nWe studied all consecutive patients initiated on maintenance hemodialysis or peritoneal dialysis over several years at two dialysis units in Northern California. Rapid decline in kidney function was considered to have occurred if a patient was documented to have estimated GFR > 30 ml/min/1.73 m2 within three months prior to the initiation of chronic dialysis.\n\nResults\nWe found that 8 out of 105 incident chronic dialysis patients one dialysis unit (7.6%; 95% confidence interval 3.4-14.5%) and 9 out of 71 incident patients at another (12.7%, 95% CI 6.0%-22.7%) suffered rapid decline in kidney function that was the immediate precipitant for the need for permanent renal replacement therapy. All these patients started hemodialysis and all relied on catheters for vascular access. Documentation submitted to United States Renal Data System did not fully reflect the health status of these patients during their \"pre-ESRD\" period.\n\nConclusions\nA sizeable minority of ESRD cases are preceded by rapid declines in kidney function. The importance of these periods of rapid decline may have been under-appreciated in prior studies of the natural history of CKD and ESRD....
Introduction\nSerum creatinine concentration (sCr) is the marker used for diagnosing and staging acute kidney injury (AKI) in the RIFLE and AKIN classification systems, but is influenced by several factors including its volume of distribution. We evaluated the effect of fluid accumulation on sCr to estimate severity of AKI.\nMethods\nIn 253 patients recruited from a prospective observational study of critically-ill patients with AKI, we calculated cumulative fluid balance and computed a fluid-adjusted sCr concentration reflecting the effect of volume of distribution during the development phase of AKI. The time to reach a relative 50% increase from the reference sCr using the crude and adjusted sCr was compared. We defined late recognition to estimate severity of AKI when this time interval to reach 50% relative increase between the crude and adjusted sCr exceeded 24 hours.\nResults\nThe median cumulative fluid balance increased from 2.7 liters on day 2 to 6.5 liters on day 7. The difference between adjusted and crude sCr was significantly higher at each time point and progressively increased from a median difference of 0.09 mg/dL to 0.65 mg/dL after six days. Sixty-four (25%) patients met criteria for a late recognition to estimate severity progression of AKI. This group of patients had a lower urine output and a higher daily and cumulative fluid balance during the development phase of AKI. They were more likely to need dialysis but showed no difference in mortality compared to patients who did not meet the criteria for late recognition of severity progression.\nConclusions\nIn critically-ill patients, the dilution of sCr by fluid accumulation may lead to underestimation of the severity of AKI and increases the time required to identify a 50% relative increase in sCr. A simple formula to correct sCr for fluid balance can improve staging of AKI and provide a better parameter for earlier recognition of severity progression....
Background\nSince men with chronic kidney disease (CKD) progress faster than women, an accurate assessment of CKD progression rates should be based on gender differences in age-related decline of glomerular filtration rate (GFR) in healthy individuals.\n\nMethods\nA Chinese sample population from a stratified, multistage, and clustered CKD screening study was classified into healthy, at-risk, and CKD groups. The gender differences in estimated GFR (eGFR) and age-related eGFR decline were calculated for each group after controlling for blood pressure, fasting glucose levels, serum lipids levels, education level, and smoking status. After referencing to the healthy group, gender-specific multivariate-adjusted rates of decline in eGFR and differences in the rates of decline were calculated for both CKD and at-risk groups.\n\nResults\nThe healthy, at-risk, and CKD groups consisted of 4569, 7434, and 1573 people, respectively. In all the 3 groups, the multivariate-adjusted eGFRs in men were lower than the corresponding eGFRs in women. In addition, in the healthy and at-risk groups, the rates of decline in eGFR in men were lower than the corresponding rates of decline in women (healthy group: 0.51 mL�·min-1�·1.73 m-2�·yr-1 vs. 0.74 mL�·min-1�·1.73 m-2�·yr-1 and at-risk group: 0.60 mL�·min-1�·1.73 m-2�·yr-1 vs. 0.73 mL�·min-1�·1.73 m-2�·yr-1). However, in the CKD group, the rates of decline in eGFR in men were similar to those in women (0.96 mL�·min-1�·1.73 m-2�·yr-1 vs. 0.91 mL�·min-1�·1.73 m-2�·yr-1). However, after referencing to the healthy group, the rates of decline in eGFR in men in the at-risk and CKD groups were greater faster than the corresponding rates in women (at-risk group: 0.10 mL�·min-1�·1.73 m-2�·yr-1 vs. -0.03 mL�·min-1�·1.73 m-2�·yr-1 and CKD group: 0.44 mL�·min-1�·1.73 m-2�·yr-1 vs. 0.15 mL�·min-1�·1.73 m-2�·yr-1).\n\nConclusion\nTo accurately assess gender differences in CKD progression rates, gender differences in age-related decline in GFR should be considered.\n\nKeywords: chronic kidney disease; glomerular filtration rate; gender; agingBackground\nMen with chronic kidney disease (CKD) progress to end-stage CKD at a faster rate than women[1,2]. This gender-specific difference cannot be fully explained on the basis of differences in blood pressure, glucose metabolism, or serum cholesterol levels. It is speculated that this difference may be related to gender-specific differences in glomerular structure, hemodynamic condition, activity of local cytokines and hormones, gene expression, and/or the effects of sex hormones on kidney cells[3,4]. However, these differences also exist in healthy genders[5,6] and cause gender difference in age-related loss of glomerular filtration rate (GFR) in healthy population[7-9]. Thus, an accurate assessment of the gender-specific CKD progression rate should be based on the gender differences in age-related decline in GFR in healthy individuals. In addition, some previous studies did not observe a faster progression of CKD in men[10,11]. The gender-specific difference in CKD progression rates reflect not only biological differences but also differences in environmental, socioeconomic, lifestyle, and health care factors, which are not usually considered as risk factors for CKD and its progression[12,13]. Therefore, to determine the effect of gender alone on CKD progression, these factors should be adjusted. Therefore, we used a randomly sampled population from a well organized CKD screening study to determine gender-specific difference in CKD progression rates after adjusting for the normal age-related GFR decline and after controlling for potential confounding variables, such as health status, socioeconomic status, and lifestyle behaviors....
Background\nSevere hypokalemia is known to cause muscle paralysis, and renal tubular acidosis is a recognized cause. Cystic disease of the kidney is associated with severe hypokalemia.\n\nCase presentation\nWe report a 33-year-old male patient who presented with generalized limb weakness caused by severe hypokalemia due to renal tubular acidosis, who was found to have renal medullary cysts.\n\nConclusion\nThe association of cystic renal disease with hypokalemia, and the possible pathophysiological basis of the development of renal cysts in patients with severe hypokalemia, are discussed....
Background\nMinimization of hemodynamic instability during renal replacement therapy (RRT) in patients with acute kidney injury (AKI) is often challenging. We examined the relative hemodynamic tolerability of sustained low efficiency dialysis (SLED) and continuous renal replacement therapy (CRRT) in critically ill patients with AKI. We also compared the feasibility of SLED administration with that of CRRT and intermittent hemodialysis (IHD).\n\nMethods\nThis cohort study encompassed four critical care units within a single university-affiliated medical centre. 77 consecutive critically ill patients with AKI who were treated with CRRT (n = 30), SLED (n = 13) or IHD (n = 34) and completed at least two RRT sessions were included in the study. Overall, 223 RRT sessions were analyzed. Hemodynamic instability during a given session was defined as the composite of a > 20% reduction in mean arterial pressure or any escalation in pressor requirements. Treatment feasibility was evaluated based on the fraction of the prescribed therapy time that was delivered. An interrupted session was designated if < 90% of the prescribed time was administered. Generalized estimating equations were used to compare the hemodynamic tolerability of SLED vs CRRT while accounting for within-patient clustering of repeated sessions and key confounders.\n\nResults\nHemodynamic instability occurred during 22 (56.4%) SLED and 43 (50.0%) CRRT sessions (p = 0.51). In a multivariable analysis that accounted for clustering of multiple sessions within the same patient, the odds ratio for hemodynamic instability with SLED was 1.20 (95% CI 0.58-2.47), as compared to CRRT. Session interruption occurred in 16 (16.3), 30 (34.9) and 11 (28.2) of IHD, CRRT and SLED therapies, respectively.\n\nConclusions\nIn critically ill patients with AKI, the administration of SLED is feasible and provides comparable hemodynamic control to CRRT...
Background\nAfrican Americans have an increased incidence and worse prognosis with chronic kidney disease (CKD - estimated glomerular filtration rate [eGFR] <60 ml/min/1.73 m2) than their counterparts of European-descent. Inflammation has been related to renal disease in non-Hispanic whites, but there are limited data on the role of inflammation in renal dysfunction in African Americans in the community.\n\nMethods\nWe examined the cross-sectional relation of log transformed C-reactive protein (CRP) to renal function (eGFR by Modification of Diet and Renal Disease equation) in African American participants of the community-based Jackson Heart Study's first examination (2000 to 2004). We conducted multivariable linear regression relating CRP to eGFR adjusting for age, sex, body mass index, systolic and diastolic blood pressure, diabetes, total/HDL cholesterol, triglycerides, smoking, antihypertensive therapy, lipid lowering therapy, hormone replacement therapy, and prevalent cardiovascular disease events. In a secondary analysis we assessed the association of CRP with albuminuria (defined as albumin-to-creatinine ratio > 30 mg/g).\n\nResults\nParticipants (n = 4320, 63.2% women) had a mean age �± SD of 54.0 �± 12.8 years. The prevalence of CKD was 5.2% (n = 228 cases). In multivariable regression, CRP concentrations were higher in those with CKD compared to those without CKD (mean CRP 3.2 �± 1.1 mg/L vs. 2.4 �± 1.0 mg/L, respectively p < 0.0001). CRP was significantly associated with albuminuria in sex and age adjusted model however not in the multivariable adjusted model (p > 0.05).\n\nConclusion\nCRP was associated with CKD however not albuminuria in multivariable-adjusted analyses. The study of inflammation in the progression of renal disease in African Americans merits further investigation....
Loading....