Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
This paper introduces a knowledge–data dual-driven method for predicting groundwater conditions during tunnel construction. Unlike existing methods, our approach effectively integrates trend characteristics of apparent resistivity from detection results with geological distribution characteristics and expert insights. This dual-driven strategy significantly enhances the accuracy of the prediction model. The intelligent prediction process for tunnel groundwater conditions proceeds in the following steps: First, the apparent resistivity data matrix is obtained from transient electromagnetic detection results and standardized. Second, to improve data quality, trend characteristics are extracted from the apparent resistivity data, and outliers are eliminated. Third, expert insights are systematically integrated to fully utilize prior information on groundwater conditions at the construction face, leading to the establishment of robust predictive models tailored to data from various construction surfaces. Finally, the relevant prediction segment is extracted to complete the groundwater condition forecast....
Growing environmental concerns and the depletion of fossil-based resources have accelerated the demand for sustainable alternatives in engineering and construction materials. Among these, bio-based composites have gained attention for their use of renewable and eco-friendly resources. Macadamia nutshells, typically treated as agricultural waste, possess high strength, brittleness, heat resistance, and fracture toughness, making them attractive candidates for structural applications. Australia alone contributes nearly 40% of global macadamia production, generating significant shell by-products that could be repurposed into high-value composites. This study investigates the development of novel composite cores and sandwich structures using macadamia nutshell particles reinforced in an epoxy polymer matrix. Two weight ratios (10% and 15%) and two particle sizes (200–600 μm and 1–1.18 mm) were employed, combined with laminating epoxy resin and hardener to fabricate composite cores. These cores were further processed into sandwich specimens with carbon fabric skins. Flexural and short beam shear (SBS) tests were conducted to evaluate the mechanical behaviour of the composites. The results demonstrate that higher filler content with fine particles achieved up to 15% higher flexural strength and 18% higher stiffness compared to coarser particle composites. Sandwich structures exhibited markedly improved interlaminar shear strength (8–15 MPa), confirming superior load transfer and durability. The results demonstrate that higher filler content and finer particles provided the most favourable mechanical performance, showing higher flexural strength, stiffness, and shear resistance compared to coarser particle formulations. Sandwich structures significantly outperformed core-only composites due to improved load transfer and resistance to bending and shear stresses, with the 15% fine-particle configuration emerging as the optimal formulation. By transforming macadamia nutshells into value-added composites, this research highlights an innovative pathway for waste utilisation, reduced environmental impact, and sustainable material development. The findings suggest that such composites hold strong potential for structural applications in construction and related engineering fields, especially in regions with abundant macadamia production. This study reinforces the role of agricultural by-products as practical solutions for advancing green composites and contributing to circular economy principles....
This study was conducted to improve the heat performance of bitumen. The effect of eggshells on the performance of bitumen was investigated. Eggshell waste was ground and mixed with bitumen at 1%, 2%, and 3% by weight. Sulfuric acid was used as a catalyst for maximum interaction of eggshells with bitumen. The high heat performance and rutting resistance of modified bitumen formed at 160 ◦C were determined by the Dynamic Shear Rheometer (DSR) test. In addition, the low heat performance of modified bitumen was determined with the Bending Beam Rheometer (BBR) test. It was determined that the high heat performance of modified bitumen increased by 16.22% and the low heat performance (creep values) by 11.43% compared to pure bitumen. In addition, it was determined that the rutting resistance values of modified bitumen increased compared to pure bitumen....
In order to study the durability of graphene oxide concrete composite in chloride and sulfate environments, graphene oxide concrete composite specimens were immersed in a mixed solution of 5% sodium sulfate and sodium chloride. After dry–wet cycle immersion and long-term natural immersion, the compressive strength, strength reduction rate, and mass loss rate of concrete specimens were tested. The microstructure was analyzed by scanning electron microscopy (SEM), and the durability of graphene oxide concrete composite in chloride and sulfate environments was analyzed. The results show that with the increase in corrosion age, under dry–wet cycle immersion and long-term natural immersion, the compressive strength reduction coefficient and mass loss rate of graphene oxide concrete composite specimens with 0.07% content are the smallest. The stress–strain curve of concrete after corrosion is flatter than that of uncorroded concrete, and the ductility of concrete specimens after corrosion increased. Through microstructure analysis, it can be seen that the internal structure of graphene oxide concrete composite test block is more compact, the hydration products are regulated, the corrosion of concrete is delayed, and the durability performance is better. Graphene oxide is used to improve the strength and durability of concrete, and the recommended dosage is 0.07%....
Soil strengthening with hydraulic binders has gained popularity in recent years and provides an alternative to traditional methods, both for foundation reinforcement and for retaining walls. In many cases, columns, walls, or soil-cement mix blocks require reinforcement with steel sections. Correctly assessing the load-bearing capacity of a reinforced element requires an understanding of the bonding forces between the steel and the soilcement mix. This article presents the results of pull-out tests conducted on steel flat bars embedded in a soil-cement mix. A soil-cement mix containing sand, silt, and clay fractions was prepared. The surfaces of the flat bars were treated in three different ways, and their roughness was subsequently measured. The pull-out strength of steel flat bars embedded in a soil-cement mix with compressive strength in the range of 1–2 MPa was determined. The tests revealed a correlation between surface roughness and bond strength. The conducted tests provided the basis for developing new research directions and for formulating a new bonding model for the interaction between steel profiles and soil-cement....
Loading....