Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
This article presents a comparative study of the storage of energy produced by photovoltaic panels by means of two types of batteries: Lead–Acid and Lithium-Ion batteries. The work involved the construction of a model in MATLAB-Simulink for controlling the loading/unloading of storage batteries with energy produced by photovoltaic panels through a buck-type DC-DC convertor, controlled by means of the MPPT algorithm implemented through the method of incremental conductance based on a MATLAB function. The program for the MATLAB function was developed by the author in the C++ programming environment. The MPPT algorithm provides maximum energy transfer from the photovoltaic panels to the battery. The electric power taken over at a certain moment by Lithium-Ion batteries in photovoltaic panels is higher than the electric power taken over by Lead–Acid batteries. Two types of batteries were successively used in this model: Lead–Acid and Lithium-Ion batteries. Based on the results being obtained and presented in this work it may be affirmed that the storage battery Lithium-Ion is more performant than the Lead-Acid storage battery. At the Laboratory of Electrical Machinery and Drives of the Engineering Faculty of Bacau, an experimental stand was built for a storing system for electric energy produced by photovoltaic panels. For controlling DC-DC buck-type convertors, a program was developed in the programming environment Arduino IDE for implementing the MPPT algorithm for incremental conductance. The simulation part of this program is similar to that of the program developed in C++. Through conducting experiments, it was observed that, during battery charging, along with an increase in the charging voltage, an increase in the filling factor of the PWM signal controlling the buck DC-DC convertor also occurred. The findings of this study may be applicable to the storage of battery-generated electrical energy used for supplying electrical motors in electric cars....
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has realtime limitations. Therefore, this paper proposes a hybrid modeling framework that integrates the physical mechanism and measured data and realizes the dynamic compensation of the force ripple by constructing a collaborative suppression algorithm. At the mechanistic level, based on electromagnetic field theory and the virtual displacement principle, an analytical model of the core disturbance terms such as the cogging effect and the end effect is established. At the data level, the acceleration sensor is used to collect the dynamic response signal in real time, and the data-driven ripple residual model is constructed by combining frequency domain analysis and parameter fiing. In order to verify the effectiveness of the algorithm, a hardware and software experimental platform including a multi-core processor, high-precision current loop controller, real-time data acquisition module, and motion control unit is built to realize the online calculation and closedloop injection of the hybrid compensation current. Experiments show that the hybrid framework effectively compensates the unmodeled disturbance through the data model while maintaining the physical interpretability of the mechanistic model, which provides a new idea for motor performance optimization under complex working conditions....
This paper presents the initial design of a permanent magnet synchronous machine with mechanically controlled excitation flux using the linear sliding motion of an additional excitation source placed inside a hollow shaft in the rotor. A new rotor design concept and assembling method are described and presented in detail. On the basis of 3D-FE analysis results, the principle of adjusting reluctance, magnetic flux distribution, flux linkage, field weakening rate, no-load back EMF waveforms, electromagnetic torque, magnetic tension, and the effectiveness of the excitation adjustment of the presented machine design are discussed. The presented machine concept enables the design of permanent magnet excited machines with a good flux control range operating in changing load conditions under variable rotor speed....
The increase in electrification and desire for greater electrical motor efficiency under a range of operating conditions for different products (e.g., household appliances, automotive and aerospace) is driving innovative motor designs and demands for higher performing electrical steels. Improvements in the magnetic, electrical and/or mechanical properties of electrical steels are required for high-volume electric motors and recent advances include steels with increased silicon (Si) content (from <3.5 wt% Si up to 6.5 wt%). Whilst the 6.5 wt% Si steels provide increased motor performance at high frequencies, the formation of a brittle BCC B2/D03 phase means that they cannot be cold-rolled, and therefore the production route involves siliconization after the required thickness strip is produced. The advances in computationally driven alloy design, coupled with physical metallurgical understanding, allow for more adventurous alloy design for electrical steels, outside the traditional predominantly Fe-Si compositional space. Two alloys representing a new alloy family called HiPPES (High-Performing and Processable Electrical Steel), based on low cost commonly used steel alloying elements, have been developed, cast, rolled, heat-treated, and both magnetically and mechanically tested. These alloys (with nominal compositions of Fe-3.2Mn-3.61Si-0.63Ni-0.75Cr-0.15Al-0.4Mo and Fe-2Mn- 4.5Si-0.4Ni-0.75Cr-0.09Al) offer improvements compared to current ≈3 wt% Si grades: in magnetic performance (>25% magnetic loss reduction at >1 kHz), and in tensile strength (>33% increase in tensile strength with similar elongation value). Most importantly, they are maintaining processability to allow for full-scale commercial production using traditional continuous casting, hot and cold rolling, and annealing. The new alloys also showed improved resilience to grain size, with the HiPPES materials showing a <5% variance in loss at frequencies greater than 400 Hz for grain sizes between 55 and 180 μm. Comparatively, a commercial M250-35A material showed a 40% increase in loss for the same range. The paper reports on the alloy design approach used, the microstructures, and the mechanical, electrical and magnetic properties of the developed novel electrical steels compared to conventional ≈3 wt% Si and 6.5 wt% Si material....
Due to their high carrier mobility, thermal conductivity, and exceptional foldability, transition metal dichalcogenides (TMDs) present promising prospects in the realm of flexible semiconductor devices. Concurrently, tunneling field-effect transistors (TFETs) have garnered significant attention owing to their low energy consumption. This study investigates a TMD van der Waals heterojunction (VdWH) TFET, specifically by fabricating MoS2 field-effect transistors (FETs), WSe2 FETs, and MoS2/WSe2 VdWH TFETs. The N-type characteristics of the MoS2 and P-type characteristics of WSe2 are established through an analysis of the electrical characteristics of the respective FETs. Finally, we analyze the energy band and electrical characteristics of the MoS2/WSe2 VdWH TFET, which exhibits a drain current switching ratio of 105. This study provides valuable insights for the development of novel low-power devices....
Loading....