Current Issue : April - June Volume : 2021 Issue Number : 2 Articles : 5 Articles
Alzheimer’s disease (AD) is a common chronic neurodegenerative disorders. Melatonin (MLT) has been reported to be neuroprotective agent, and its modified structures exhibit potent antioxidant and anti-inflammation activities. Therefore, the activity of MLT and its derivatives against AD was investigated. Herein, the targeted enzymes, such as β-secretase (BACE1) and acetylcholinesterase (AChE), as well as the neuroprotective and neuritogenic effects on P19-derived neurons were evaluated. All the derivatives (1–5), including MLT, displayed potent inhibitory activity for BACE1, with inhibition values of more than 75% at 5 μM. A molecular docking study predicted that MLT, 5-MT, and 5 bound with BACE1 at catalytic amino acids Asp32 and the flap region, whereas 1–4 interacted with allosteric residue Thr232 and the flap region. The additional π-π interactions between 2, 3, and 5 with Tyr71 promoted ligand-enzyme binding. In addition, MLT, 1, 3, and 5 significantly protected neuron cells from oxidative stress by increasing the cell viability to 97.95, 74.29, 70.80, and 69.50% at 1 nM, respectively. Moreover, these derivatives significantly induced neurite outgrowth by increasing the neurite length and number. The derivatives 1, 3, and 5 should be thoroughly studied as potential AD treatment and neuroprotective agents....
Chemotherapy-induced peripheral neuropathy is a common factor in limiting therapy which can result in therapy cessation or dose reduction. Gabapentin, a calcium channel inhibitor, and duloxetine, a serotonin noradrenaline reuptake inhibitor, are used to treat a variety of pain conditions such as chronic low back pain, postherpetic neuralgia, and diabetic neuropathy. It has been reported that administration of gabapentin suppressed oxaliplatin- and paclitaxel-induced mechanical hyperalgesia in rats. Moreover, duloxetine has been shown to suppress oxaliplatininduced cold allodynia in rats. However, the mechanisms by which these drugs prevent oxaliplatinand paclitaxel-induced neuropathy remain unknown. Behavioral assays were performed using cold plate and the von Frey test. The expression levels of proteins were examined using western blot analysis. In this study, we investigated the mechanisms by which gabapentin and duloxetine prevent oxaliplatin- and paclitaxel-induced neuropathy in mice. We found that gabapentin and duloxetine prevented the development of oxaliplatin- and paclitaxel-induced cold and mechanical allodynia. In addition, our results revealed that gabapentin and duloxetine suppressed extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation in the spinal cord of mice. Moreover, PD0325901 prevented the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 activation in the spinal cord of mice. In summary, our findings suggest that gabapentin, duloxetine, and PD0325901 prevent the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 phosphorylation in mice. Therefore, inhibiting ERK1/2 phosphorylation could be an effective preventive strategy against oxaliplatin- and paclitaxel-induced neuropathy....
Blood clots play the primary role in neurological deficits after germinal matrix hemorrhage (GMH). Previous studies have shown a beneficial effect in blood clot clearance after hemorrhagic stroke. The purpose of this study is to investigate interleukin-19’s role in hematoma clearance after GMH and its underlying mechanism of IL-20R1/ERK/Nrf2 signaling pathway. Methods. A total of 240 Sprague-Dawley P7 rat pups were used. GMH was induced by intraparenchymal injection of bacterial collagenase. rIL-19 was administered intranasally 1 hour post-GMH. IL-20R1 CRISPR was administered intracerebroventricularly, or Nrf2 antagonist ML385 was administered intraperitoneally 48 hours and 1 hour before GMH induction, respectively. Neurobehavior, Western blot, immunohistochemistry, histology, and hemoglobin assay were used to evaluate treatment regiments in the short- and long-term. Results. Endogenous IL-19, IL-20R1, IL-20R2, and scavenger receptor CD163 were increased after GMH. rIL-19 treatment improved neurological deficits, reduced hematoma volume and hemoglobin content, reduced ventriculomegaly, and attenuated cortical thickness loss. Additionally, treatment increased ERK, Nrf2, and CD163 expression, whereas IL-20R1 CRISPR-knockdown plasmid and ML385 inhibited the effects of rIL-19 on CD163 expression. Conclusion. rIL-19 treatment improved hematoma clearance and attenuated neurological deficits induced by GMH, which was mediated through the upregulation of the IL-20R1/ERK/Nrf2 pathways. rIL-19 treatment may provide a promising therapeutic strategy for the GMH patient population....
Though widely known as a potent antithrombin agent with protective effects on the kidney and other remote organs, it is currently ambiguous when it comes to sulodexide’s function on ischemia-reperfusion (I/R) injury. With this research, we pursued to further explore how sulodexide exerts its influence on limb I/R injury, in which deleterious effects on the kidney were what we primarily focused on. Methods. We randomized twenty-four C57BL/6 male rats into three groups, namely, sham operation group (control group), I/R group, and sulodexide pretreatment group. Hematoxylin and eosin staining was applied for discovery of renal histological changes. Serum creatinine (Cr) and serum urea nitrogen (BUN) were measured. Apoptotic parameters were detected by the TdT-mediated dUTP Nick-End Labeling method. To what extent and levels that antiapoptotic and proapoptotic proteins were expressed could be sensitively revealed by immunohistochemistry assay. Lipid peroxidation product propylene glycol and inflammatory factors were examined by enzyme-linked immunosorbent assay. Additionally, an extracorporeal hypoxia-reoxygenation (H/R) model of human renal proximal tubule epithelial HK2 cells was established. Our targets lay in cell proliferation and apoptosis, and we used western blotting to reflect apoptosis-related gene expression. Results. The levels of serum BUN, Cr, and inflammatory factors in sulodexide-intervened rats manifested significant reduction when compared with the I/R group. Also, sulodexide could protect the kidney from histological changes and could effectively inhibit intraparenchymal apoptosis. Furthermore, adding 2 μl/mL or 5 μl/mL of sulodexide to H/R model cells in vitro gave rise to significant restoration of the degenerative proliferation capacity of the HK2 cells following H/R injury and late cellular apoptosis experienced dramatic reduction versus the H/R group. When treated with 5 μl/mL of sulodexide at a dose of 10 mg/kg, the levels of the antiapoptotic proteins were increased, while the proapoptotic proteins showed opposite trends. Notable escalation on antiapoptotic protein expression level, in contrast with the opposite trends exhibited in proapoptotic proteins, was observed with 5 μl/mL sulodexide pretreatment with the dosage being 10 mg/kg. Conclusion. Sulodexide can protect against kidney damage caused by I/R injury of the lower limbs by enhancing cell proliferation, inhibiting apoptosis, reducing inflammatory reactions, and scavenging oxygen free radicals....
A series of triterpenic acid amides were synthesized incorporating a 2-ethoxy-3- phenylpropanoic acid pharmacophore fragment. The synthesized compounds were tested for their ability to improve glycemic control and to counter lipid abnormalities in C57BL/6 mice placed on a high-fat/high-cholesterol diet. Of all tested compounds, the dihydrobetulonic derivative (16b) had the most pronounced effect in decreasing blood glucose levels, total cholesterol (TC), and high-density lipoproteins (HDL). All the synthesized compounds displayed a relatively safe profile in the animal studies carried out in this work....
Loading....