Current Issue : April - June Volume : 2021 Issue Number : 2 Articles : 5 Articles
Cardiac computed tomography angiography (CCTA) is widely used as a diagnostic tool for evaluation of coronary artery disease (CAD). Despite the excellent capability to rule-out CAD, CCTA may overestimate the degree of stenosis; furthermore, CCTA analysis can be time consuming, often requiring advanced postprocessing techniques. In consideration of the most recent ESC guidelines on CAD management, which will likely increase CCTA volume over the next years, new tools are necessary to shorten reporting time and improve the accuracy for the detection of ischemia-inducing coronary lesions. The application of artificial intelligence (AI) may provide a helpful tool in CCTA, improving the evaluation and quantification of coronary stenosis, plaque characterization, and assessment of myocardial ischemia. Furthermore, in comparison with existing risk scores, machinelearning algorithms can better predict the outcome utilizing both imaging findings and clinical parameters. Medical AI is moving from the research field to daily clinical practice, and with the increasing number of CCTA examinations, AI will be extensively utilized in cardiac imaging. This review is aimed at illustrating the state of the art in AI-based CCTA applications and future clinical scenarios....
The most common mesenchymal tumors are gastrointestinal stromal tumors (GISTs), which have malignant potential and can occur anywhere along the gastrointestinal system. Imaging methods are important and indispensable of GISTs in diagnosis, risk staging, therapy, and follow-up. The recommended imaging method for staging and follow-up is computed tomography (CT) according to current guidelines. Artificial intelligence (AI) applies and elaborates theses, procedures, modes, and utilization systems for simulating, enlarging, and stretching the intellectual capacity of humans. Recently, researchers have done a few studies to explore AI applications in GIST imaging. This article reviews the present AI studies in GISTs imaging, including preoperative diagnosis, risk stratification and prediction of prognosis, gene mutation, and targeted therapy response....
In this paper, we present a probabilistic-based method to predict malaria disease at an early stage. Malaria is a very dangerous disease that creates a lot of health problems. Therefore, there is a need for a system that helps us to recognize this disease at early stages through the visual symptoms and from the environmental data. In this paper, we proposed a Bayesian network (BN) model to predict the occurrences of malaria disease. The proposed BN model is built on different attributes of the patient’s symptoms and environmental data which are divided into training and testing parts. Our proposed BN model when evaluated on the collected dataset found promising results with an accuracy of 81%. One the other hand, F1 score is also a good evaluation of these probabilistic models because there is a huge variation in class data. The complexity of these models is very high due to the increase of parent nodes in the given influence diagram, and the conditional probability table (CPT) also becomes more complex....
This study aims at analyzing the separability of acute cerebral infarction lesions which were invisible in CT. 38 patients, who were diagnosed with acute cerebral infarction and performed both CT and MRI, and 18 patients, who had no positive finding in either CT or MRI, were enrolled. Comparative studies were performed on lesion and symmetrical regions, normal brain and symmetrical regions, lesion, and normal brain regions. MRI was reconstructed and affine transformed to obtain accurate lesion position of CT. Radiomic features and information gain were introduced to capture efficient features. Finally, 10 classifiers were established with selected features to evaluate the effectiveness of analysis. 1301 radiomic features were extracted from candidate regions after registration. For lesion and their symmetrical regions, there were 280 features with information gain greater than 0.1 and 2 features with information gain greater than 0.3. The average classification accuracy was 0.6467, and the best classification accuracy was 0.7748. For normal brain and their symmetrical regions, there were 176 features with information gain greater than 0.1, 1 feature with information gain greater than 0.2. The average classification accuracy was 0.5414, and the best classification accuracy was 0.6782. For normal brain and lesions, there were 501 features with information gain greater than 0.1 and 1 feature with information gain greater than 0.5. The average classification accuracy was 0.7480, and the best classification accuracy was 0.8694. In conclusion, the study captured significant features correlated with acute cerebral infarction and confirmed the separability of acute lesions in CT, which established foundation for further artificial intelligence-assisted CT diagnosis....
The application prospect of biodegradable materials is being studied extensively. However, the high corrosion rate and its alloys in body fluids have been major limitations of the application of pure Mg (magnesium). To improve corrosion resistance of biodegradable AZ31 Mg alloy, we adopted microarc fluorination within a voltage range of 100-300V in 46% hydrofluoric acid. To obtain morphologies, chemical compositions, and structural characteristics, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were performed, respectively. Results showed that the coating was mainly composed of MgF2. Electrochemical corrosion and immersion tests proved that the corrosion resistance of MAF-treated AZ31 Mg alloy was significantly improved compared with untreated AZ31 Mg alloy in HBSS (Hank’s Balanced Salt Solution). Current densities of AZ31, MAF100, MAF150, MAF200, MAF250, and MAF300 were 342.4, 0.295, 0.228, 0.177, 0.199, and 0.212 μA/cm2, respectively. The roughness test indicated that samples under MAF treatment of 200 V, 250 V, and 300V had large surface roughness. Meanwhile, the contact angle measurement and surface free energy test suggested that those samples had smaller contact angle and higher SFE than Ti. Thus, MAF-treated AZ31 Mg alloy might have promising application in various fields....
Loading....