Current Issue : April - June Volume : 2021 Issue Number : 2 Articles : 5 Articles
The trend to implement the monitoring system with a wireless sensor network has been becoming urgent due to guaranteed flight safety and the passengers comfortability in travel. In this paper, a new dynamic routing algorithm is proposed to prolong the lifetime of the monitoring system with a distributed network based on the K-coverage method, and filter algorithm to be used for data fusion. Finally, the simulation results validate the effectiveness of the proposed approach....
Due to unavoidable environmental factors, wireless sensor networks are facing numerous tribulations regarding network coverage. These arose due to the uncouth deployment of the sensor nodes in the wireless coverage area that ultimately degrades the performance and confines the coverage range. In order to enhance the network coverage range, an instance (node) redeployment-based Bodacious-instance Coverage Mechanism (BiCM) is proposed. The proposed mechanism creates new instance positions in the coverage area. It operates in two stages; in the first stage, it locates the intended instance position through the Dissimilitude Enhancement Scheme (DES) and moves the instance to a new position, while the second stage is called the depuration, when the moving distance between the initial and intended instance positions is sagaciously reduced. Further, the variations of various parameters of BiCM such as loudness, pulse emission rate, maximum frequency, grid points, and sensing radius have been explored, and the optimized parameters are identified. The performance metric has been meticulously analyzed through simulation results and is compared with the state-of-the-art Fruit Fly Optimization Algorithm (FOA) and, one step above, the tuned BiCM algorithm in terms of mean coverage rate, computation time, and standard deviation. The coverage range curve for various numbers of iterations and sensor nodes is also presented for the tuned Bodacious-instance Coverage Mechanism (tuned BiCM), BiCM, and FOA. The performance metrics generated by the simulation have vouched for the effectiveness of tuned BiCM as it achieved more coverage range than BiCM and FOA....
Due to the constantly changing sea surface, there is a high risk of link fragility caused by sea waves when different marine users are intended to establish stable links for communication. To ensure stability with less delay, finding a stable route is one of the crucial aspects of maritime networks. In order to achieve this aim, we propose a routing protocol for cognitive maritime networks based on software-defined networking (SDN). This SDN-based cognitive routing protocol provides stable routes among different marine users. To provide the global view of the whole network, a main controller is placed close to the seashore, whereas the localized views are provided by the cluster heads. Autonomous surface vehicles are used as gateways under sparse network conditions to collect and transport data among clusters, and to and from the main controller. This is an SDN-based ship-to-ship communication scheme where two ships can only establish a link when they not only have consensus about a common idle channel but are also within the communication range of each other. We perform extensive simulations to test the proposed scheme with different parameters and find better performance in comparison with both SDN-based and non-SDN-based schemes in terms of end-to-end delay, packet delivery ratio, and routing overhead ratio....
In a wireless sensor network, the sensor nodes transmit the acquired information to the server through the data transmission link. On the serverside, the data are processed, fused, and expressed to serve the user. Sensor deployment is a key factor related to the stability and security of wireless networks. This article uses environmental changes to drive related technologies to deploy wireless sensors. In this article, environmental change-driven means that through certain deployment cost model assumptions and problem descriptions, network deployment is artificially divided into two stages: initial deployment and redeployment. In the deployment phase, by referring to the idea of virtual force, a new sensor deployment algorithm is proposed in the redeployment phase, which can well solve the stability- and security-related issues encountered in agricultural wireless sensor networks. In this algorithm, the moving distance of the mobile receiver and the average coverage of the network are calculated based on the virtual force, the direction, and the number of adjacent clusters. Finally, the algorithm model was simulated in MATLAB, and the feasibility of the algorithm was verified by analyzing the event coverage and the moving distance of nodes. The final simulation results show that the algorithm proposed in this paper can achieve better performance than existing algorithms in terms of average coverage and moving distance....
With the rapid developments of wireless communication and increasing number of connected vehicles, Vehicular Ad Hoc Networks (VANETs) enable cyberinteractions in the physical transportation system. Future networks require real-time control capability to support delay-sensitive application such as connected autonomous vehicles. In recent years, fog computing becomes an emerging technology to deal with the insufficiency in traditional cloud computing. In this paper, a fog-based distributed network control design is proposed toward connected and automated vehicle application. The proposed architecture combines VANETs with the new fog paradigm to enhance the connectivity and collaboration among distributed vehicles. A case study of connected cruise control (CCC) is introduced to demonstrate the efficiency of the proposed architecture and control design. Finally, we discuss some future research directions and open issues to be addressed....
Loading....