Current Issue : July - September Volume : 2021 Issue Number : 3 Articles : 5 Articles
This article presents a low power digital controlled oscillator (DCO) with an ultra low power duty cycle correction (DCC) scheme. The DCO with the complementary cross-coupled topology uses the controllable tail resistor to improve the tail current efficiency. A robust duty cycle correction (DCC) scheme is introduced to replace self-biased inverters to save power further. The proposed DCO is implemented in a Semiconductor Manufacturing International Corporation (SMIC) 40 nm CMOS process...........................
This paper presents a fourth-order continuous-time analog filter based on the cascade of two flipped-source-follower (FSF) biquadratic (biquad) cells. The FSF biquad adopts two interacting loops (the first due to the classic source-follower, and the second to the additional gain path) which lower the impedances of all circuit nodes with relevant benefits in terms of noise power reduction and linearity enhancement..................
This investigation presents an energy harvesting IC (integrated circuit) for piezoelectric materials as a substitute for battery of a wearable biomedical device. It employs a voltage multiplier as first stage which uses water bucket fountain approach to boost the very low voltage generated by the piezoelectric. The boosted voltage was further improved by the boost DC/DC converter which follows a predefined timing control directed by the digital logic for the said converter to be operated efficiently. TSMC 40-nm CMOS process was used for implementation and fabrication of the energy harvesting IC..........................
This paper presents a variable-gain amplifier (VGA) in the 68–78 GHz range. To reduce DC power consumption, the drain voltage was set to 0.5 V with competitive performance in the gain and the noise figure. High-Q shunt capacitors were employed at the gate terminal of the core transistors to move input matching points for easy matching with a compact transformer. The four stages amplifier fabricated in 40-nm bulk complementary metal oxide semiconductor (CMOS) showed a peak gain of 24.5 dB at 71.3 GHz and 3-dB bandwidth of more than 10 GHz in 68–78 GHz range with approximately 4.8-mW power consumption per stage. Gate-bias control of the second stage in which feedback capacitances were neutralized with cross-coupled capacitors allowed us to vary the gain by around 21 dB in the operating frequency band. The noise figure was estimated to be better than 5.9 dB in the operating frequency band from the full electromagnetic (EM) simulation....
It is a long-standing goal to leverage silicon photonics through the combination of a lowcost advanced silicon platform with III-V-based active gain material. The monolithic integration of the III-V material is ultimately desirable for scalable integrated circuits but inherently challenging due to the large lattice and thermal mismatch with Si. Here, we briefly review different approaches to monolithic III-V integration while focusing on discussing the results achieved using an integration technique called template-assisted selective epitaxy (TASE), which provides some unique opportunities compared to existing state-of-the-art approaches. This method relies on the selective replacement of a prepatterned silicon structure with III-V material and thereby achieves the self-aligned in-plane monolithic integration of III-Vs on silicon. In our group, we have realized several embodiments of TASE for different applications; here, we will focus specifically on in-plane integrated photonic structures due to the ease with which these can be coupled to SOI waveguides and the inherent in-plane doping orientation, which is beneficial to waveguide-coupled architectures. In particular, we will discuss light emitters based on hybrid III-V/Si photonic crystal structures and high-speed InGaAs detectors, both covering the entire telecom wavelength spectral range. This opens a new path towards the realization of fully integrated, densely packed, and scalable photonic integrated circuits....
Loading....