Current Issue : July - September Volume : 2021 Issue Number : 3 Articles : 5 Articles
A compact quasi-Yagi antenna with bent arms and split-ring resonators (SRRs) is proposed. Compared with traditional quasi- Yagi antennas employing straight arms, the resonant frequency of the proposed antenna could be always consistent with its center frequency, and there is no obvious frequency shift under the process of its miniaturization.....................
In this paper, a low-profile circularly polarized (CP) conical-beam antenna with a wide overlap bandwidth is presented. Such an antenna is constructed on the two sides of a square substrate. The antenna consists of a wideband monopolar patch antenna fed by a probe in the center and two sets of arc-hook-shaped branches. The monopolar patch antenna is loaded by a set of conductive shorting vias to achieve a wideband vertically polarized electric field. Two sets of arc-hook-shaped parasitic branches connected to the patch and ground plane can generate a horizontally polarized electric field. To further increase the bandwidth of the horizontally polarized electric field, two types of arc-hook-shaped branches with different sizes are used, which can generate another resonant frequency....
An integrated optimization of sum and difference beam for time-modulated linear antenna array is studied in this paper. The goal of sum and difference beam synthesis is to generate sum beam in the main band and difference beams in the first-order sideband with low side-lobe level through timing switches. The turn-on times of antenna array are achieved by solving a quadratic constraint linear programming; meanwhile, the opening times are optimized by particle swarm optimization algorithm....
This paper presents a novel design of a modified ultrawideband (UWB) antenna array integrated with a multimode resonator bandpass filter. First, a single UWB antenna is modified and studied, using a P-shape radiated patch instead of a full elliptical patch, for wide impedance bandwidth and high realized gain....
Rectangular waveguides containing inhomogeneous metamaterials with graded refractive-index profiles have potential applications in bending waveguides and radiation-enhanced antennas, and accurate eigenvalue solutions are prerequisite. Commonly used commercial electromagnetic solvers such as HFSS, COMSOL, and CST could not efficiently calculate the eigenvalues of waveguides containing graded refractive-index dielectrics. In this paper, an accurate and efficient semianalytical method based on the modal expansion has been proposed to solve these waveguides....
Loading....