Current Issue : October-December Volume : 2021 Issue Number : 4 Articles : 5 Articles
Background. Early diagnosis of hypoxic-ischaemic encephalopathy (HIE) is crucial in preventing neurodevelopmental disabilities and reducing morbidity and mortality. The study was to investigate the plasma metabolic signatures in the peripheral blood of HIE newborns and explore the potential diagnostic biomarkers. Method. In the present study, 24 newborns with HIE and 24 healthy controls were recruited. The plasma metabolites were measured by gas chromatography-mass spectrometry (GC-MS), and the raw data was standardized by the EigenMS method. Significantly differential metabolites were identified by multivariate statistics. Pathway enrichment was performed by bioinformatics analysis. Meanwhile, the diagnostic value of candidate biomarkers was evaluated. Result. The multivariate statistical models showed a robust capacity to distinguish the HIE cases from the controls. 52 metabolites were completely annotated. 331 significantly changed pathways were enriched based on seven databases, including 33 overlapped pathways. Most of them were related to amino acid metabolism, energy metabolism, neurotransmitter biosynthesis, pyrimidine metabolism, the regulation of HIF by oxygen, and GPCR downstream signaling. 14 candidate metabolites showed great diagnostic potential on HIE. Among them, alpha-ketoglutaric acid has the potential to assess the severity of HIE in particular. Conclusion. The blood plasma metabolic profile could comprehensively reflect the metabolic disorders of the whole body under hypoxiaischaemic injury. Several candidate metabolites may serve as promising biomarkers for the early diagnosis of HIE. Further validation based on large clinical samples and the establishment of guidelines for the clinical application of mass spectrometry data standardization methods are imperative in the future....
Clobazam (CLB) is a benzodiazepine that is used in many types of epilepsy. Although therapeutic drug monitoring (TDM) of CLB is not routine, there is evidence that TDM may be of value in conditions where pharmacokinetic alterations are suspected. Therefore, determination of both CLB and its active metabolite concentrations is essential for TDM. Herein, we present a simple and practical method for determination of CLB and N-desmethylclobazam (NDMCLB) in human plasma by highperformance liquid chromatography (HPLC). The drugs were extracted by hexane:dichloromethane (1:1, v/v) from 0.3 mL plasma. The separation was carried out with a C18 reverse phase column using a mobile phase of water:acetonitrile (57:43, v/v) pumped at 0.8 mL/min. The analytes were detected at 228 nm. The method was linear over the concentration range 20–500 ng/mL for CLB and 200–3000 ng/mL for NDMCLB. The intra-day coefficient of variation (CV) was <10% for CLB and <6% for NDMCLB, while the inter-day CV for CLB was <16%. The metabolite inter-day CV was <6%. The accuracy of intra- and inter-day assessments determined for CLB and NDMCLB was within 10%. This paper describes a rapid, reliable, and simple method for measuring CLB and its metabolite NDMCLB in human plasma. This UV-HPLC procedure offers acceptable precision and accuracy to quantify CLB and its metabolite in human plasma....
Cirsimarin is a bioactive antilipogenic flavonoid isolated from the cotyledons of Abrus precatorius and represents one of the most abundant flavonoids present in this plant species. Cirsimarin exhibits excellent antioxidant, lipolysis, and other biological properties; it can effectively trigger lipid movement and demonstrates antiobesity effects. In this work, an ultra-highperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of cirsimarin in rat plasma after intravenous administration. A standard curve of cirsimarin in blank rat plasma was generated over the concentration range of 1–3000 ng/mL. Six rats were administered cirsimarin intravenously (1 mg/kg). The method only required 50 μL of plasma for sample preparation, and the plasma proteins were precipitated with acetonitrile to pretreat the plasma sample. The precisions of cirsimarin in rat plasma were less than 14%, while the accuracies varied between 92.5% and 107.3%. In addition, the matrix effect varied between 103.6% and 107.4%, while the recoveries were greater than 84.2%. This UPLC-MS/MS method was then applied in measuring the pharmacokinetics of cirsimarin in rats. The AUC(0-t) values of cirsimarin from the pharmacokinetic analysis were 1068:2 ± 359:2 ng/mL·h for intravenous administration. The half-life (t1/2) was 1:1 ± 0:4 h (intravenous), indicating that the metabolism of the compound was quick in the rats. Exploring the pharmacokinetics of cirsimarin in vivo can help better understand its metabolism....
Therapeutic options to treat HIV infection have widened in the past years, improving both effectiveness and tolerability, but nucleoside reverse transcriptase inhibitors (NRTIs) are still considered the standard backbone of the combination regimens. Therapeutic drug monitoring (TDM) can be useful for these drugs, due to concentration–effect relationship, with risk of ineffectiveness, toxicity or adherence concerns: in this scenario, robust and multiplexed methods are needed for an effective TDM activity. In this work, the first validated ultra-high spectrometry liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) method is described for the high-sensitive simultaneous quantification of all the currently used NRTIs in human plasma, including tenofovir alafenamide (TAF), following FDA and EMA guidelines. The automated sample preparation consisted in the addition of an internal standard (IS) working solution, containing stable-isotope-linked drugs, protein precipitation and drying. Dry extracts were reconstituted with water, then, these underwent reversed phase chromatographic separation: compounds were detected through electrospray ionization and multiple reaction monitoring. Accuracy, precision, recovery and IS-normalized matrix effect fulfilled guidelines’ requirements. The application of this method on samples from people living with HIV (PLWH) showed satisfactory performance, being capable of quantifying the very low concentrations of tenofovir (TFV) in patients treated with TAF....
The roots of Salvia miltiorrhiza (Danshen) is a precious herbal medicine used to treat cardiovascular diseases. This study establishes a high-performance liquid chromatography-tandem mass spectrometric (HPLC-MS/MS) method to quantify seven bioactive constituents from Danshen in rat plasma simultaneously. Chromatographic separation is performed on an Agilent Eclipse Plus C18 column (150 mm 2.1 mm, 5 m), utilizing a gradient of acetonitrile and 0.2% formic acid aqueous solution as the mobile phase, at a flow rate of 0.6 mL/min. We conduct a tandem mass spectrometric detection with electrospray ionization (ESI) interface via multiple reaction monitoring (MRM) in both positive and negative ionization mode. Our results show that a linear relationship is established for each analyte of interest over the concentration range of 0.5–300 ng/mL with r 0.9976. The validated method is successfully used to compare the pharmacokinetic properties of crude and wine-processed Danshen extract orally administered to rats. Cmax of tanshinone IIA, Cmax, and AUC0-t of dihydrotanshinone I decrease significantly (p < 0.05) in the wine-processed group. No significant changes for other compounds are observed. These results might provide meaningful information for the further application of wine-processed Danshen and understanding of wine-processing mechanisms....
Loading....