Current Issue : October-December Volume : 2021 Issue Number : 4 Articles : 5 Articles
Boron neutron capture therapy (BNCT) is based on the ability of the boron-10 (10B) isotope to capture epithermal neutrons, as a result of which the isotope becomes unstable and decays into kinetically active elements that destroy cells where the nuclear reaction has occurred. The boroncarrying compounds—L-para-boronophenylalanine (BPA) and sodium mercaptoundecahydro-closododecaborate (BSH)—have low toxicity and, today, are the only representatives of such compounds approved for clinical trials. For the effectiveness and safety of BNCT, a low boron content in normal tissues and substantially higher content in tumor tissue are required. This study evaluated the boron concentration in intracranial grafts of human glioma U87MG cells and normal tissues of the brain and other organs of mice at 1, 2.5 and 5 h after administration of the boron-carrying compounds. A detailed statistical analysis of the boron biodistribution dynamics was performed to find a ‘window of opportunity’ for BNCT. The data demonstrate variations in boron accumulation in different tissues depending on the compound used, as well as significant inter-animal variation. The protocol of administration of BPA and BSH compounds used did not allow achieving the parameters necessary for the successful course of BNCT in a glioma orthotopic xenograft mouse model....
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases leading to dementia. Despite research efforts, currently there are no effective pharmacotherapeutic options for the prevention and treatment of AD. Recently, numerous studies highlighted the beneficial effects of curcumin (CUR), a natural polyphenol, in the neuroprotection. Especially, its dual antioxidant and anti-inflammatory properties attracted the interest of researchers. In fact, besides its antioxidant and anti-inflammatory properties, this biomolecule is not degraded in the intestinal tract. Additionally, CUR is able to cross the blood–brain barrier and could therefore to be used to treat neurodegenerative pathologies associated with oxidative stress, inflammation and apoptosis. The present study aimed to assess the ability of CUR to induce neuronal protective and/or recovery effects on a rat model of neurotoxicity induced by aluminum chloride (AlCl3), which mimics the sporadic form of Alzheimer’s disease. Our results showed that treatment with CUR enhances pro-oxidant levels, antioxidant enzymes activities and anti-inflammatory cytokine production and decreases apoptotic cells in AlCl3-exposed hippocampus rats. Additionally, histopathological analysis of hippocampus revealed the potential of CUR in decreasing the hallmarks in the AlCl3-induced AD. We also showed that CUR post-treatment significantly improved the behavioral, oxidative stress and inflammation in AlCl3-exposed rats. Taken together, our data presented CUR as a nutraceutical potential through its protective effects that are more interesting than recovery ones in sporadic model of AD....
Infection of mice with Coxsackievirus B3 (CVB3) triggers inflammation of the heart and this mouse model is commonly used to investigate underlying mechanisms and therapeutic aspects for viral myocarditis. Virus-triggered cytotoxicity and the activity of infiltrating immune cells contribute to cardiac tissue injury. In addition to cardiac manifestation, CVB3 causes cell death and inflammation in the pancreas. The resulting pancreatitis represents a severe burden and under such experimental conditions, analgesics may be supportive to improve the animals’ well-being. Notably, several known mechanisms exist by which analgesics can interfere with the immune system and thereby compromise the feasibility of the model. We set up a study aiming to improve animal welfare while ensuring model integrity and investigated how tramadol, an opioid, affects virus-induced pathogenicity and immune response in the heart. Tramadol was administered seven days prior to a CVB3 infection in C57BL/6 mice and treatment was continued until the day of analysis. Tramadol had no effect on the virus titer or viral pathogenicity in the heart tissue and the inflammatory response, a hallmark of myocardial injury, was maintained. Our results show that tramadol exerts no disruptive effects on the CVB3 myocarditis mouse model and, therefore, the demonstrated protocol should be considered as a general analgesic strategy for CVB3 infection....
There is a strong need for innovative and efficient drug delivery systems for ocular therapy development. However, testing intravitreal drug delivery systems without using live animals is challenging. Ex vivo animal models offer an interesting alternative. We analyzed the potential of using fresh porcine eyes obtained from the local slaughterhouse as a model for testing the intravitreal biodistribution and retention of liposomes with or without polyethylene glycol (PEG) conjugation and with different surface charges. The histology of the eyes was analyzed to localize the liposomes, and it was found that liposomes with PEG absorbed rapidly on the retina (within 1 h), with positively charged and PEG-coated liposomes being retained for at least 24 h. In parallel, fluorophotometry was employed on intact eyes, to determine the pharmacokinetics of the fluorophore calcein, as a substitute for a small hydrophilic therapeutic compound. We found a 4.5-fold increase in the vitreous half-life of calcein loaded in liposomes, compared with the free solution. Retinal toxicity was addressed using murine-derived retinal explant cultures. Liposomes were non-toxic up to 500 g/mL. Toxicity was observed at 5 mg/mL for anionic and cationic liposomes, with 2-fold and 2.5-fold increased photoreceptor cell death, respectively. Overall, we could show that important ocular drug delivery considerations such as pharmacokinetics and biodistribution can be estimated in ex vivo porcine eyes, and may guide subsequent in vivo experiments....
Up to now, there are no studies that have shown a decrease in morbidity and mortality in the context of sepsis and septic shock, except for antibiotic therapy and the objective-guided resuscitation strategy. The goal was to evaluate the use of thiosulfinate-enriched Allium sativum extract (TASE) as an adjuvant in the management of sepsis. An experimental in vivo study was carried out with male Sprague Dawley® rats. Animals were randomized in three treatment groups: the control group (I), antibiotic (ceftriaxone) treatment group (II) and ceftriaxone plus TASE treatment group (III). All animals were housed and inoculated with 1 1010 CFU/15 mL of intraperitoneal Escherichia coli ATCC 25922. Subsequently, they received a daily treatment according to each group for 7 days. Clinical, analytical, microbiological, and histopathological parameters were evaluated. Statistically significant clinical improvement was observed in the ceftriaxone plus TASE vs. ceftriaxone group in weight, ocular secretions, whiskers separation and physical activity level (p 0.05). When comparing interleukins on the third day of treatment between II and III, we found statistically significant differences in IL-1 levels (p < 0.05). Blood and peritoneal liquid cultures of group I were positive for multisensitive E. coli. Group II and III cultures were negative for E. coli, although an overgrowth of Enterococcus faecalis was found. In conclusion, TASE used as an adjuvant to antibiotic treatment in the management of sepsis could improve response profiles with sepsis attenuation, thus reducing overall mortality after an animal peritonitis model....
Loading....