Current Issue : October-December Volume : 2021 Issue Number : 4 Articles : 5 Articles
In recent years, the surface defect detection technology of irregular industrial products based on machine vision has been widely used in various industrial scenarios. This paper takes Bluetooth headsets as an example, proposes a Bluetooth headset surface defect detection algorithm based on machine vision to quickly and accurately detect defects on the headset surface. After analyzing the surface characteristics and defect types of Bluetooth headsets, we proposed a surface scratch detection algorithm and a surface glue-overflowed detection algorithm. The result of the experiment shows that the detection algorithm can detect the surface defect of Bluetooth headsets fast as well as effectively, and the accuracy of defect recognition reaches 98%. The experiment verifies the correctness of the theory analysis and detection algorithm; therefore, the detection algorithm can be used in the recognition and detection of surface defect of Bluetooth headsets....
In recent years, athlete action recognition has become an important research field for showing and recognition of athlete actions. Generally speaking, movement recognition of athletes can be performed through a variety of modes, such as motion sensors, machine vision, and big data analysis. Among them, machine vision and big data analysis usually contain significant information which can be used for various purposes. Machine vision can be expressed as the recognition of the time sequence of a series of athlete actions captured through camera, so that it can intervene in the training of athletes by visual methods and approaches. Big data contains a large number of athletes’ historical training and competition data which need exploration. In-depth analysis and feature mining of big data will help coach teams to develop training plans and devise new suggestions. On the basis of the above observations, this paper proposes a novel spatiotemporal attention map convolutional network to identify athletes’ actions, and through the auxiliary analysis of big data, gives reasonable action intervention suggestions, and provides coaches and decisionmaking teams to formulate scientific training programs. Results of the study show the effectiveness of the proposed research....
This study is to explore the gesture recognition and behavior tracking in swimming motion images under computer machine vision and to expand the application of moving target detection and tracking algorithms based on computer machine vision in this field. )e objectives are realized by moving target detection and tracking, Gaussian mixture model, optimized correlation filtering algorithm, and Camshift tracking algorithm. Firstly, the Gaussian algorithm is introduced into target tracking and detection to reduce the filtering loss and make the acquired motion posture more accurate. Secondly, an improved kernel-related filter tracking algorithm is proposed by training multiple filters, which can clearly and accurately obtain the motion trajectory of the monitored target object. Finally, it is proposed to combine the Kalman algorithm with the Camshift algorithm for optimization, which can complete the tracking and recognition of moving targets. )e experimental results show that the target tracking and detection method can obtain the movement form of the template object relatively completely, and the kernel-related filter tracking algorithm can also obtain the movement speed of the target object finely. In addition, the accuracy of Camshift tracking algorithm can reach 86.02%. Results of this study can provide reliable data support and reference for expanding the application of moving target detection and tracking methods....
Automated recognition of human facial expressions of pain and emotions is to a certain degree a solved problem, using approaches based on computer vision and machine learning. However, the application of such methods to horses has proven difficult. Major barriers are the lack of sufficiently large, annotated databases for horses and difficulties in obtaining correct classifications of pain because horses are non-verbal. This review describes our work to overcome these barriers, using two different approaches. One involves the use of a manual, but relatively objective, classification system for facial activity (Facial Action Coding System), where data are analyzed for pain expressions after coding using machine learning principles. We have devised tools that can aid manual labeling by identifying the faces and facial keypoints of horses. This approach provides promising results in the automated recognition of facial action units from images. The second approach, recurrent neural network end-to-end learning, requires less extraction of features and representations from the video but instead depends on large volumes of video data with ground truth. Our preliminary results suggest clearly that dynamics are important for pain recognition and show that combinations of recurrent neural networks can classify experimental pain in a small number of horses better than human raters....
In road environments, real-time knowledge of local weather conditions is an essential prerequisite for addressing the twin challenges of enhancing road safety and avoiding congestions. Currently, the main means of quantifying weather conditions along a road network requires the installation of meteorological stations. Such stations are costly and must be maintained; however, large numbers of cameras are already installed on the roadside. A new artificial intelligence method that uses road traffic cameras and a convolution neural network to detect weather conditions has, therefore, been proposed. It addresses a clearly defined set of constraints relating to the ability to operate in real-time and to classify the full spectrum of meteorological conditions and order them according to their intensity. The method can differentiate between five weather conditions such as normal (no precipitation), heavy rain, light rain, heavy fog and light fog. The deep-learning method’s training and testing phases were conducted using a new database called the Cerema-AWH (Adverse Weather Highway) database. After several optimisation steps, the proposed method obtained an accuracy of 0.99 for classification....
Loading....