Current Issue : April-June Volume : 2022 Issue Number : 2 Articles : 5 Articles
Based on the features of cracks, this research proposes the concept of a crack key point as a method for crack characterization and establishes a model of image crack detection based on the reference anchor points method, named KP-CraNet. Based on ResNet, the last three feature layers are repurposed for the specific task of crack key point feature extraction, named a feature filtration network. The accuracy of the model recognition is controllable and can meet both the pixel-level requirements and the efficiency needs of engineering. In order to verify the rationality and applicability of the image crack detection model in this study, we propose a distribution map of distance. The results for factors of a classical evaluation such as accuracy, recall rate, F1 score, and the distribution map of distance show that the method established in this research can improve crack detection quality and has a strong generalization ability. Our model provides a new method of crack detection based on computer vision technology....
Compressed stabilized earth blocks are the innovation of building materials replacing the earth blocks commonly called adobe. Common stabilizers (cement and lime) have been found to be expensive and harmful to the environment. Finding a natural, available, environmentally friendly stabilizer is vital. The objective of this study was therefore to assess the effects of gum Arabic (GA) as binder on the durability properties of laterite blocks. Compressed laterite blocks were stabilized with 2% and 6% respectively as total percentage of binders in the blocks (cement and/or GA). The results showed that GA improved the abrasion and drop resistances of compressed blocks. It has been found that the abrasion resistance of compressed blocks increased with the increase of GA content and the decrease of cement content. For instance, the mass abraded away of blocks stabilized with cement only was reduced up to 95.18% when GA was used to partially replace cement. As for drop test, the higher the content of GA the higher the resistance of blocks to drop....
A composite mineral admixture was prepared by steel slag and superfine blast furnace slag.-einfluence of superfine blast furnace slag content of the composite mixture on the mortar and concrete was investigated. -e results show that the composite mineral admixture may decrease the strength of concrete at the early age but improve the strength development over time. Increasing the content of superfine blast furnace slag can reduce the degradation of the early strength. -e reduction of the autogenous shrinkage and adiabatic temperature rise is significant when the composite mineral admixture is added. -e reduction is more obvious when the water-to-solid ratio (w/s) is low. -eresults show that with steel slag and superfine blast furnace slag playing as complementary parts in the composite mineral admixture, it can be used as an effective substitute of cement....
Based on the cohesive zone model, the 2D mesostructures were developed for numerical studies of multi-phase hooked-end steel fiber reinforced concrete under uniaxial compression. The zero-thickness cohesive interface elements were inserted within the mortar, on interfaces of mortar and aggregates and interfaces of mortar and fibers to simulate the failure process of fiber reinforced concrete. The results showed that the numerical results matched well the experimental results in both failure modes and stress-strain behavior. Hooked-end steel fiber reinforced concrete exhibited ductile failure and maintained integrity during a whole failure process. Compared with normal concrete, HES fiber reinforced concrete was greater stiffness and compressive strength; the descending branch of the stress-strain curve was significantly flatter; the residual stress was higher....
The use of materials from waste in buildings compensates for the lack of natural resources, solves the problem of waste management and provides an alternative technique for protection of the environment. There are a large number of industrial wastes that are used for full or partial replacement of raw materials in some construction materials. This review assesses mining waste in concrete as a substitute for aggregates and cement; in fired bricks as a substitute for soil; and in road backfill as a substitute for soil. This paper reviews some mining tailings, mine waste rocks and some slags obtained in the exploitation and/or processing of some ores including iron, gold, lead, phosphate, copper, coal, etc. Different physical properties, mechanical properties, chemical properties, heavy metal content, mineralogic composition, geotechnical properties and environmental properties (leaching test) of the mine wastes were examined. The physical, mechanical and environmental properties of the materials obtained by substitution of raw materials by mine waste were examined and compared to reference materials. Mining waste in cementitious materials offers good compressive strengths, while the porosity of the concrete and/or mortar is a factor influencing its toxicity. As for the waste in fired bricks, fired at a temperature of 900˚C or more, it offers convincing compressive and flexural strengths. The few research studies obtained on the use of mining waste in road embankments have shown that mining waste can be used as a sub-base layer and backfill as long as it is not toxic. In addition, several other mining wastes require special attention as substitutes for raw materials in construction materials, such as coltan, cobalt....
Loading....