Current Issue : July-September Volume : 2022 Issue Number : 3 Articles : 5 Articles
Glossogyne tenuifolia (GT) is a native perennial plant growing across the coastline areas in Taiwan. The current study aimed to examine the efficacy of GT extract in ameliorating physical fatigue during exercise and increasing exercise performance. Fifty male Institute of Cancer Research (ICR) mice were randomly segregated into five groups (n = 10) to GT extract orally for 4 weeks, at different concentrations (50, 100, 250, and 500 mg/kg BW/day): LGT 1X, MGT 2X, HGT 5X, and HGT 10X groups. Forelimb grip strength, endurance swimming time, serum biochemical marker levels, blood lipid profile and histological analysis of various organs were performed to assess the anti-fatigue effect and exercise performance of GT extract. The forelimb-grips strength and enduranceswimming time of GT-administered mice were increased significantly in a dose-dependent manner when compared to the control. Serum glucose, creatine kinase, and lactate levels were increased significantly in the HGT 10X group. Liver marker serum glutamic-oxaloacetic transaminase (GOT) was increased in the HGT 5X and HGT 10X groups, whereas Serum Glutamic Pyruvic Transaminase (GPT) was not altered. Renal markers, creatinine and uric acid levels, were not altered. Muscle and hepatic glycogen levels, which are essential for energy sources during exercise, were also significantly increased in a dose-dependent manner in all GT extract groups. No visible histological aberrations were observed in the vital organs after GT extract administration. The supplementation with GT extract could have beneficial effects on exercise performance and anti-fatigue function without toxicity at a higher dose....
The exploration of new bioactive compounds from natural resources as alternatives to synthetic chemicals has recently attracted the attention of scientists and researchers. To our knowledge, the essential oil (EO) of Kickxia aegyptiaca has not yet been explored. Thus, the present study was designed to explore the EO chemical profile of K. aegyptiaca for the first time, as well as evaluate its antioxidant and antibacterial activities, particularly the extracts of this plant that have been reported to possess various biological activities. The EO was extracted from the aerial parts via hydrodistillation and then characterized by gas chromatography-mass spectrometry (GC-MS). The extracted EO was tested for its antioxidant activity via the reduction in the free radicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). In addition, the EO was tested as an antibacterial mediator against eight Gram-negative and Gram-positive bacterial isolates. Forty-three compounds were identified in the EO of K. aegyptiaca, with a predominance of terpenoids (75.46%). Oxygenated compounds were the main class, with oxygenated sesquiterpenes attaining 40.42% of the EO total mass, while the oxygenated monoterpenes comprised 29.82%. The major compounds were cuminic aldehyde (21.99%), caryophyllene oxide (17.34%), hexahydrofarnesyl acetone (11.74%), ar-turmerone (8.51%), aromadendrene oxide (3.74%), and humulene epoxide (2.70%). According to the IC50 data, the K. aegyptiaca EO revealed considerable antioxidant activity, with IC50 values of 30.48 mg L−1 and 35.01 mg L−1 for DPPH and ABTS, respectively. In addition, the EO of K. aegyptiaca showed more substantial antibacterial activity against Gram-positive bacterial isolates compared to Gram-negative. Based on the minimum inhibitory concentration (MIC), the EO showed the highest activity against Escherichia coli and Bacillus cereus, with an MIC value of 0.031 mg mL−1. The present study showed, for the first time, that the EO of K. aegyptiaca has more oxygenated compounds with substantial antioxidant and antibacterial activities. This activity could be attributed to the effect of the main compounds, either singular or synergistic. Thus, further studies are recommended to characterize the major compounds, either alone or in combination as antioxidants or antimicrobial agents, and evaluate their biosafety....
The present study was carried out to develop an experimental endodontic irrigant solution based on plant extracts obtained from Epilobium parviflorum Schreb. that largely replenish the properties of the usual antiseptics used in dentistry. Background: This study investigated the phytochemical contents of plant extracts obtained from Epilobium parviflorum Schreb. and their potential antibacterial activity. Methods: Identification and quantification of biologically active compounds were made by UV field photo spectrometry, adapting the Folin-Ciocalteu test method. Antibacterial activity was tested on pathological bacterial cultures collected from tooth with endodontic infections using a modified Kirby-Bauer diffuse metric method. Results: Polyphenols and flavonoids were present in all plant extracts; the hydroalcoholic extract had the highest amount of polyphenols—17.44 pyrogallol equivalent (Eq Pir)/mL and flavonoids—3.13 quercetin equivalent (Eq Qr)/mL. Plant extracts had antibacterial activity among the tested bacterial species with the following inhibition diameter: White Staphylococcus (16.5 mm), Streptococcus mitis (25 mm), Streptococcus sanguis (27 mm), Enterococcus faecalis (10 mm). Conclusions: All plant extracts contain polyphenols and flavonoids; the antibacterial activity was in direct ratio with the amount of the bioactive compounds....
The aerial parts of Anthemis tinctoria L. and Angelica sylvestris L. and the roots of A. sylvestris have been used as traditional anticancer remedies in Estonian ethnomedicine. The aim of this study was to investigate content of essential oils (by gas chromatography) and polyphenolic compounds (using two different methods of high performance liquid chromatography–mass spectrometry (HPLC– MS)) of both plant species, as well as the in vitro anti-cancer effects of their essential oils and methanolic extracts. The average (n = 5 samples) yield of essential oils was 0.15%, 0.13%, and 0.17%, respectively. The principal compounds of the essential oil from the aerial parts of A. tinctoria were palmitic acid (15.3%), p-cymene (12.6%), and α-muurolene (12.5%), and α-pinene (45.4%), p-cymene (15.5%), and β-myrcene (13.3%) in aerial parts of A. sylvestris, while isocaryophyllene oxide (31.9%), α-bisabolol (17.5%), and α-pinene (12.4%) were the main constituents in the roots. The most abundant phenolic compounds in aerial parts were the derivatives of caffeic acid, quinic acid, and quercetin; the main compounds in roots of A. sylvestris were chlorogenic acid, quinic acid, and naringenin. The strongest anticancer effects were observed in essential oils of A. sylvestris roots and aerial parts on human carcinoma in the mouth cells (KB, IC50 19.73 μg/mL and 19.84 μg/mL, respectively). The essential oil of A. tinctoria showed a strong effect on KB and LNCaP cells (27.75–29.96 μg/mL). The methanolic extracts of both plants had no effect on the cancer cells studied....
Loading....