Current Issue : July-September Volume : 2022 Issue Number : 3 Articles : 5 Articles
The bacterial cell wall is essential for protecting bacteria from the surrounding environment and maintaining the integrity of bacteria cells. The MurA enzyme, which is an essential enzyme involved in bacterial cell wall synthesis, could be a good drug target for antibiotics. Although fosfomycin is used clinically as a MurA inhibitor, resistance to this antibiotic is a concern. Here we used molecular docking-based virtual screening approaches to identify potential MurA inhibitors from 1.412 million compounds from three databases. Thirty-three top compounds from virtual screening were experimentally tested in Listeria innocua (Gram-positive bacterium) and Escherichia coli (Gramnegative bacterium). Compound 2-Amino-5-bromobenzimidazole (S17) showed growth inhibition effect in both L. innocua and E. coli, with the same Minimum Inhibitory Concentration (MIC) value of 0.5 mg/mL. Compound 2-[4-(dimethylamino)benzylidene]-n-nitrohydrazinecarboximidamide (C1) had growth inhibition effect only in L. innocua, with a MIC value of 0.5 mg/mL. Two FDA-approved drugs, albendazole (S4) and diflunisal (S8), had a growth inhibition effect only in E. coli, with a MIC value of 0.0625 mg/mL. The identified MurA inhibitors could be potential novel antibiotics. Furthermore, they could be potential fosfomycin substitutes for the fosfomycin-resistant strains....
It is known that precursor clusters appear in solution prior to protein crystallization. For proteinase K, as it was found by SAXS, such clusters are dimers, but the accuracy of the method did not allow for determining its type. In this work, the behavior of six possible types of precursor clusters was simulated by the molecular dynamics technique. Stability analysis revealed the most probable type of dimer formed in the proteinase K solution before its crystallization. SAXS data modelling also supported the MD calculations. The dynamics of this precursor cluster was modeled at three temperatures: 20, 30, and 40 ◦C. At 40 ◦C, an abnormal increase in the stability of the thermophilic proteinase K was found....
The genus Cotula (Asteraceae) comprises about 80 species, amongst them Cotula anthemoides L. It is a wild plant growing in Egypt that possesses many traditional uses as a headache, colic, and chest cold remedy. In our study, the chemical composition of C. anthemoides essential oils was analyzed using GC-MS spectroscopy. Sixteen components of leave and stem oils and thirteen components of flower oils were characterized. The main components in both essential oil parts were camphor (88.79% and 86.45%) and trans-thujone (5.14% and 10.40%) in the leaves and stems and the flowers, respectively. The anti-inflammatory activity of the oils in lipopolysaccharide-stimulated RAW 264.7 macrophage cells was evaluated. The flower oil showed its predominant effect in the amelioration of proinflammatory cytokines and tumor necrosis factor-α, as well as cyclooxygenase-2. The bornyl acetate showed the highest affinity for the cyclooxygenase-2 receptor, while compound cis-p-menth-2-ene-1-ol had the best affinity for the tumor necrosis factor receptor, according to the results of molecular docking. In addition, the molecule cis-β-farnesene showed promising dual affinity for both studied receptors. Our findings show that essential oils from C. anthemoides have anti-inflammatory properties through their control over the generation of inflammatory mediators. These findings suggest that C. anthemoides essential oils could lead to the discovery of novel sources of anti-inflammatory treatments....
Streptococci are a family of bacterial species significantly affecting human health. In addition, environmental Streptococci represent one of the major causes of diverse livestock diseases. Due to antimicrobial resistance, there is an urgent need for novel antimicrobial agent discovery against Streptococci. We discovered a class of benzoic acid derivatives named sigmacidins inhibiting the bacterial RNA polymerase-σ factor interaction and demonstrating excellent antimicrobial activity against Streptococci. In this work, a combinational computer approach was applied to gain insight into the structural basis and mechanism of action of sigmacidins as antimicrobials against Streptococcus pneumoniae. Both two- and three-dimensional quantitative structure-active relationships (2D and 3D QSAR) of sigmacidins displayed good predictive ability. Moreover, molecular docking and molecular dynamics simulation studies disclosed possible contacts between the inhibitors and the protein. The results obtained in this study provided understanding and new directions to the further optimizations of sigmacidins as novel antimicrobials....
A novel 4(1H) quinolinone derivative (QBCP) was synthesized and characterized with single crystal X-ray diffraction. Hirshfeld surfaces (HS) analyses were employed as a complementary tool to evaluate the crystal intermolecular interactions. The molecular global reactivity parameters of QBCP were studied using HOMO and LUMO energies. In addition, the molecular electrostatic potential (MEP) and the UV-Vis absorption and emission spectra were obtained and analyzed. The supermolecule (SM) approach was employed to build a bulk with 474,552 atoms to simulate the crystalline environment polarization effect on the asymmetric unit of the compound. The nonlinear optical properties were investigated using the density functional method (DFT/CAM-B3LYP) with the Pople’s 6-311++G(d,p) basis set. The quantum DFT results of the linear polarizability, the average second-order hyperpolarizability and the third-order nonlinear susceptibility values were computed and analyzed. The results showed that the organic compound (QBCP) has great potential for application as a third-order nonlinear optical material....
Loading....