Current Issue : July-September Volume : 2022 Issue Number : 3 Articles : 5 Articles
The tragic pandemic of COVID-19, due to the Severe Acute Respiratory Syndrome coronavirus-2 or SARS-CoV-2, has shaken the entire world, and has significantly disrupted healthcare systems in many countries. Because of the existing challenges and controversies to testing for COVID-19, improved and cost-effective methods are needed to detect the disease. For this purpose, machine learning (ML) has emerged as a strong forecasting method for detecting COVID-19 from chest X-ray images. In this paper, we used a Deep Learning Method (DLM) to detect COVID-19 using chest X-ray (CXR) images. Radiographic images are readily available and can be used effectively for COVID-19 detection compared to other expensive and time-consuming pathological tests. We used a dataset of 10,040 samples, of which 2143 had COVID-19, 3674 had pneumonia (but not COVID-19), and 4223 were normal (not COVID-19 or pneumonia). Our model had a detection accuracy of 96.43% and a sensitivity of 93.68%. The area under the ROC curve was 99% for COVID-19, 97% for pneumonia (but not COVID-19 positive), and 98% for normal cases. In conclusion, ML approaches may be used for rapid analysis of CXR images and thus enable radiologists to filter potential candidates in a time-effective manner to detect COVID-19....
The value of automatic organ-at-risk outlining software for radiotherapy is based on artificial intelligence technology in clinical applications. The accuracy of automatic segmentation of organs at risk (OARs) in radiotherapy for nasopharyngeal carcinoma was investigated. In the automatic segmentation model which is proposed in this paper, after CTscans and manual segmentation by physicians, CTimages of 147 nasopharyngeal cancer patients and their corresponding outlined OARs structures were selected and grouped into a training set (115 cases), a validation set (12 cases), and a test set (20 cases) by complete randomization. Adaptive histogram equalization is used to preprocess the CTimages. End-to-end training is utilized to improve modeling efficiency and an improved network based on 3D Unet (AUnet) is implemented to introduce organ size as prior knowledge into the convolutional kernel size design to enable the network to adaptively extract features from organs of different sizes, thus improving the performance of the model. The DSC (Dice Similarity Coefficient) coefficients and Hausdorff (HD) distances of automatic and manual segmentation are compared to verify the effectiveness of the AUnet network. The mean DSC and HD of the test set were 0.86 ± 0.02 and 4.0 ± 2.0 mm, respectively. Except for optic nerve and optic cross, there was no statistical difference between AUnet and manual segmentation results (P > 0.05). With the introduction of the adaptive mechanism, AUnet can achieve automatic segmentation of the endangered organs of nasopharyngeal carcinoma based on CT images more accurately, which can substantially improve the efficiency and consistency of segmentation of doctors in clinical applications....
Disease detection, diagnosis, and treatment can all be done with the help of digitalized medical images. Macroscopic medical images are images obtained using ionizing radiation or magnetism that identify organs and body structures. In recent years, various computational tools such as databases, distributed processing, digital image processing, and pattern recognition in digital medical images have contributed to the development of Computer-Aided Diagnosis (CAD), which serves as an auxiliary tool in health care. The use of various architectures based on convolutional neural networks (CNNs) for the automatic detection of diseases in medical images is proposed in this work. Different types of medical images are used in this work, such as chest tomography for identifying types of tuberculosis and chest X-rays for detecting pneumonia to solve the same number of classification problems or detect patterns associated with diseases. Finally, an algorithm for automatic registration of thoracic regions is proposed, which intrinsically identifies the translation, scale, and rotation that align the thoracic regions in X-ray images....
The coronavirus disease (COVID-19) is rapidly spreading around the world. Early diagnosis and isolation of COVID-19 patients has proven crucial in slowing the disease’s spread. One of the best options for detecting COVID-19 reliably and easily is to use deep learning (DL) strategies. Two different DL approaches based on a pertained neural network model (ResNet-50) for COVID-19 detection using chest X-ray (CXR) images are proposed in this study. Augmenting, enhancing, normalizing, and resizing CXR images to a fixed size are all part of the preprocessing stage. This research proposes a DL method for classifying CXR images based on an ensemble employing multiple runs of a modified version of the Resnet-50. The proposed system is evaluated against two publicly available benchmark datasets that are frequently used by several researchers: COVID-19 Image Data Collection (IDC) and CXR Images (Pneumonia). The proposed system validates its dominance over existing methods such as VGG or Densnet, with values exceeding 99.63% in many metrics, such as accuracy, precision, recall, F1-score, and Area under the curve (AUC), based on the performance results obtained....
Background: Response to induction chemotherapy (IC) has been predicted in patients with sinonasal cancer using early delta radiomics obtained from T1- and T2-weighted images and apparent diffusion coefficient (ADC) maps, comparing results with early radiological evaluation by RECIST. Methods: Fifty patients were included in the study. For each image (at baseline and after the first IC cycle), 536 radiomic features were extracted as follows: semi-supervised principal component analysis components, explaining 97% of the variance, were used together with a support vector machine (SVM) to develop a radiomic signature. One signature was developed for each sequence (T1-, T2-weighted and ADC). A multiagent decision-making algorithm was used to merge multiple signatures into one score. Results: The area under the curve (AUC) for mono-modality signatures was 0.79 (CI: 0.65–0.88), 0.76 (CI: 0.62–0.87) and 0.93 (CI: 0.75–1) using T1-, T2-weighted and ADC images, respectively. The fuse signature improved the AUC when an ADC-based signature was added. Radiological prediction using RECIST criteria reached an accuracy of 0.78. Conclusions: These results suggest the importance of early delta radiomics and of ADC maps to predict the response to IC in sinonasal cancers....
Loading....