Current Issue : July-September Volume : 2022 Issue Number : 3 Articles : 5 Articles
In the present work, the titanium carbonitride coatings were deposited by the reactive magnetron sputtering method at different substrate bias: 0, −70 V, and −100 V. The effect of the substrate bias on the structure, composition, and mechanical and tribological properties of titanium carbonitride coatings was studied. Scanning electron microscopy, nanoindentation, sliding wear test (ball-on-disk method), X-ray phase, and elemental analysis methods were used to evaluate the tribological properties and microstructure of the thin coatings. The dependencies obtained resulted in the determination of the most preferred mode of deposition by magnetron sputtering at a negative substrate bias in an atmosphere of argon–acetylene–nitrogen....
Tilting-pad journal bearings are widely used in industry to support rotating shafts due to their high dynamic performance. The operating limits of these bearings are mainly represented by the maximum permissible temperature of the lined materials of the pads and by the minimum thickness of the oil-film under which mixed lubrication can occur. The current trend in bearing development sees the adoption of innovative materials in the production of the pads, that provide higher load capacity, higher temperature capability and greater fatigue resistance. In this paper, the static characteristics of bearings lined with different materials, will be investigated. The temperature distribution in the bearing will be evaluated by means of a full 3D thermal model whereas the deformation of the pads will be evaluated by means of a finite element model. At the end, the permissible operating range in terms of load and speed will be defined for each material by considering the limits on the maximum temperature, permissible mechanical stress and minimum oil-film thickness....
Ti3SiC2-PbO-Ag composites (TSC-PA) were successfully prepared using the spark plasma sintering (SPS) technique. The ingredient and morphology of the as-synthesized composites were elaborately investigated. The tribological properties of the TSC-PA pin sliding against Inconel 718 alloys disk at room temperature (RT) to 800 ◦C were examined in air. The wear mechanisms were argued elaborately. The results showed that the TSC-PA was mainly composed of Ti3SiC2, Pb, and Ag. The average friction coefficient of TSC-PA gradually decreased from 0.72 (RT) to 0.3 (800 ◦C), with the temperature increasing from RT to 800 ◦C. The wear rate of TSC-PA showed a decreasing trend, with the temperature rising from RT to 800 ◦C. The wear rate of Inconel 718 exhibited positive wear at RT and negative wear at elevated temperatures. The tribological property of TSC-PA was related to the tribo-chemistry, and the abrasive and adhesive wear....
Titanium alloys are extensively used in the aerospace, chemical, and biomedical industries. However, it has always been a challenge in the manufacturing and machining of titanium alloys because they exhibit poor friction and wear characteristics, which results in serious problems and significantly restricts their further production and application. Therefore, in the present study, the wear contact between GCr15 steel and Ti6Al4V alloy is specifically studied by considering black phosphorus nanosheets (BP-NS) as water-based lubrication additives, which is expected to have a great potential application in manufacturing and machining titanium alloys. The influence of BP nanosheet size on the coefficient of friction (COF) and wear rate of Ti6Al4V alloy has been comprehensively studied, based on comparisons among adding large BP nanosheets (L-BP) (2– 4 μm), medium BP nanosheets (M-BP) (300–500 nm), and black phosphorus quantum dots (BPQDs) (6–10 nm). Compared with ultrapure water, the COF and wear rate of Ti6Al4V alloy are reduced by 42.4% and 82.3%, respectively, when BPQDs are used as water-based lubrication additives. This paper also shows that a lower COF and wear rate is achieved with the addition of BPQDs than the other two BP nanosheet sizes. Derived from the friction tests and worn surface analysis of Ti6Al4V alloy, lubrication mechanisms of different-sized BP lubricants were proposed. The interlaminar shearing between BP-NS and the adsorbed films were the main mechanisms for L-BP and M-BP lubricants, while the adsorption, repair, and ball-bearing effects were mainly presented in the BPQD lubricants. The discoveries in this paper would be beneficial to developing novel lubricants for the manufacturing and machining of titanium alloys....
The continuous tribological development of engine lubricants is becoming more and more vital due to its fuel efficiency improvement and lifetime increasing potential. The antiwear additives play a high role in the lubricants to protect the contacting surfaces even in the presence of thinner oil film. Nanoscale spherical particles in the lubricant may increase the necessary protecting effect. This paper presents the results of the experimental tribological investigation of nanoscale spherical Y2O3 (yttria) ceramic particles as an engine lubricant additive. The ball-on-disc tribological measurements have revealed an optimum concentration at 0.5 wt% with about 45% wear scar diameter and 90% wear volume decrease, compared to the reference, neat Group III base oil. The high-magnitude SEM analysis revealed the working mechanisms of yttria: the particles collected in the roughness valleys resulted in a smoother contacting surface, they were tribo-sintered and they have also caused slight plastic deformation of the outer layer of the metallic surface....
Loading....