Current Issue : October-December Volume : 2022 Issue Number : 4 Articles : 5 Articles
Solanum nigrum is a traditional medicinal plant renowned as a cure for many diseases due to the presence of bioactive compounds. The Solanum nigrum complex refers to a group of more than 30 closely related but morphologically distinct taxa. Five indigenous taxa of this complex were investigated for their medicinal potential by using methanolic extracts. The efficacy of each plant was different for each of the seven bacteria studied. On comparing the MIC values, S. americanum was found to be most potent against Bacillus licheniformis (34 μg/mL), S. chenopodioides against Escherichia coli (78 μg/mL), S. nigrum against Bacillus licheniformis (49 μg/mL) and Escherichia coli (49 μg/mL), S. retroflexum against Escherichia coli (30 μg/mL), and S. villosum against Proteus mirabilis (45 μg/mL). The extracts were also subjected to six antioxidant assays. Moderate scavenging activity was observed by all plants in the DPPH free radical assay, but S. chenopodioides was the most effective. The total phenolic contents of the five plants were comparable, but the gallic acid equivalents of S. americanum and S. nigrum were the highest (26.58 mg/100 g GAE). The highest Trolox equivalent antioxidant capacity was observed for S. retroflexum, with the ABTS assay giving a TEAC value of 33.88 mM/100 g of dry weight. Metal-chelating activity against Fe2+ was observed to be highest for S. chenopodioides (70.37%). The FRAP value of S. nigrum was the highest (8.5 mM FeSO4·7H2O) among all taxa. The lipid peroxidation trend was very similar for all five samples. The results suggest the specified medicinal use of different members of the Solanum nigrum complex, which will also have significant nutritional value....
Cinnamon (Cinnamomum burmannii) is a potential source used in cosmetics to prevent skin aging due to its flavonoids and antioxidant properties. This research aims to determine the best solvent for extracting flavonoids, to conduct a large-scale isolation of flavonoids, and to evaluate the effect of ascorbic acid and temperature on the extract’s stability for 16 weeks. Various solvents for small-scale extraction were screened based on the polarity index, and one of the best for use in large-scale maceration was selected based on the AlCl3 colorimetric flavonoid content and DPPH antioxidant activity. The stability test was performed by treating cinnamon with and without ascorbic acid at selected temperatures. This test measured physical stability, evaluated flavonoid content and antioxidant activity, and analyzed volatile and non-volatile compounds using GC-MS and LC-MS. The most excellent solvent to extract flavonoids was ethanol due to its high yield (21.50%), flavonoid content (0.01749 ± 8.0 × 10−5 mg QE/g extract), and antioxidant activity (IC50 0.0162 + 7.5 × 10−4 mg/mL). The ascorbic acid addition at both temperatures affected the stability of the pH and chemical constituents. The vast majority of the extract’s flavonoid content and antioxidant activity continued to increase until the end of the observation week. This study revealed that ethanol was the best extraction solvent, and ascorbic acid can be recommended as a stabilizer of cinnamon extract for use in cosmetics for further application....
Despite much interest and studies toward the genus Podocarpus, the anti-malarial evaluation of Podocarpus polystachyus’s phytoconstituents remains lacking. Herein, the phytoconstituents of P. polystachyus leaves and their anti-malarial effect against Plasmodium falciparum were investigated for the first time. One new natural product, 8ß,13ß-kaur-15-en-17-al (1), along with three known compounds, 8ß,13ß-kaur-15-en-17-ol (2) and 13ß-kaur-16-ene (3), and α-tocopherol hydroquinone (4) were isolated via HR-ESI-MS and NMR analyses. Compounds 1 and 2 inhibited P. falciparum growth at 12 and 52 μM of IC50, respectively. Their anti-malarial activity was associated with the in silico P. falciparum lactate dehydrogenase (PfLDH) inhibition. Molecular docking of ligands 1 and 2 with the putative target PfLDH revealed ~−2 kcal/mol of binding energies more negative than the control. Molecular dynamic simulations (100 ns) showed equal or smaller deviation values (RMSD, RMSF, Rg) and stronger interactions of PfLDH- 1 and PfLDH-2 complexes via at least one consistent H-bond than the control. Additionally, a slightly increased PfLDH H-bond profile in their interactions improved the PfLDH dynamic and structural stabilities. Overall, this study supports the relevance of 1 and 2 as plasmodial growth inhibitors with their putative anti-PfLDH activity, which could be a potential scaffold for developing anti-malarial drugs....
Hypericum lanuginosum is one of the traditional medicinal plants that grows in the arid area of the Al-Naqab desert in Palestine and is used by Bedouins to heal various communicable and non-communicable illnesses. The purpose of this investigation was to estimate the total phenolic, flavonoid, and tannin contents of aqueous, methanol, acetone, and hexane H. lanuginosum extracts and evaluate their cytotoxic, anti-oxidative, and antimicrobial properties. Qualitative phytochemical tests were used to identify the major phytochemical classes in H. lanuginosum extracts, while total phenol, flavonoid, and tannin contents were determined using Folin–Ciocalteu, aluminum chloride, and vanillin assays, respectively. Moreover, a microdilution test was employed to estimate the antimicrobial activity of H. lanuginosum extracts against several microbial species. At the same time, the cytotoxic and free radical scavenging effects were evaluated using 3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and 2, 2-diphenyl-1-picrylhydrazyl- hydrate (DPPH) assays, respectively. Quantitative examinations showed that the highest amounts of phenols, flavonoids, and tannins were noticed in the H. lanuginosum aqueous extract. Moreover, H. lanuginosum aqueous extract showed potent activity against methicillin-resistant Staphylococcus aureus even more than Amoxicillin and Ofloxacin antibiotics, with Minimum Inhibitory Concentrations (MICs) of 0.78 ± 0.01, 0, and 1.56 ± 0.03 μg/mL, respectively. Additionally, the aqueous extract exhibited the highest activity against Candida albicans and Epidermatophyton floccosum pathogens, with MIC values of 0.78 ± 0.01 μg/mL. Actually, the aqueous extract showed more potent antimold activity than Ketoconazole against E. floccosum with MICs of 0.78 ± 0.01 and 1.56 ± 0.02 μg/mL, respectively. Furthermore, all H. lanuginosum extracts showed potential cytotoxic effects against breast cancer (MCF-7), hepatocellular carcinoma (Hep 3B and Hep G2), and cervical adenocarcinoma (HeLa) tumor cell lines. In addition, the highest free radical scavenging activity was demonstrated by H. lanuginosum aqueous extract compared with Trolox with IC50 doses of 6.16 ± 0.75 and 2.23 ± 0.57 μg/mL, respectively. Studying H. lanuginosum aqueous extract could lead to the development of new treatments for diseases such as antibiotic-resistant microbes and cancer, as well as for oxidative stress-related disorders such as oxidative stress. H. lanuginosum aqueous extract may help in the design of novel natural preservatives and therapeutic agents....
Pentacyclic triterpenoids (PCTs) are a widely distributed class of plant secondary metabolites. These compounds have high bioactive properties, primarily antitumor and antioxidant activity. In this study, a method was developed for the quantitative analysis of pentacyclic triterpenoids in plants using supercritical fluid chromatography–tandem mass spectrometry (SFC-MS/MS). Separation of ten major PCTs (friedelin, lupeol, -amyrin, -amyrin, betulin, erythrodiol, uvaol, betulinic, oleanolic and ursolic acids) was studied on six silica-based reversed stationary phases. The best results (7 min analysis time in isocratic elution mode) were achieved on an HSS C18 SB stationary phase using carbon dioxide—isopropanol (8%) mobile phase providing decisive contribution of polar interactions to the retention of analytes. It was shown that the use of atmospheric pressure chemical ionization (APCI) is preferred over atmospheric pressure photoionization (APPI). The combination of SFC with APCI-MS/MS mass spectrometry made it possible to achieve the limits of quantification in plant extracts in the range of 2.3–20 gL1. The developed method was validated and tested in the analyses of birch outer layer (Betula pendula) bark, and licorice (Glycyrrhiza glabra) root, as well as lingonberry (Vaccinium vitis-idaea), cranberry (Vaccinium oxycoccos), apple (Malus domestica “Golden Delicious” and Malus domestica “Red Delicious”) peels....
Loading....