Current Issue : January-March Volume : 2023 Issue Number : 1 Articles : 5 Articles
Dalbavancin (DBV) is a lipoglycopeptide approved for the treatment of Gram-positive infections of the skin and skin-associated structures (ABSSSIs). Currently, its off-label use at different dosages for other infections deserves attention. This work aimed to study the clinical effectiveness and tolerability of DBV in outpatients with ABSSSIs, osteoarticular (OA), or other infections, treated with either one or two 1500 mg doses of dalbavancin, for different scheduled periods. A liquid chromatography–tandem mass spectrometry method was used to measure total DBV concentrations. PK/PD parameters and the clinical and microbiological features of this cohort were evaluated in order to investigate the best predictors of treatment success in real-life settings. Of the 76 screened patients, 41 completed the PK study. Long-term PK was comparable to previous studies and showed significant differences between genders and dosing schedules. Few adverse events were observed, and treatment success was achieved in the vast majority of patients. Failure was associated with lower PK parameters, particularly Cmax. Concluding, we were able to describe DBV PK and predictors of treatment success in selected infections in this cohort, finding DBV Cmax as a possible candidate for therapeutic drug-monitoring purposes, as well as highlighting the dual-dose one-week-apart treatment as the optimal choice for OA infections....
For decades, flucloxacillin has been used to treat methicillin-susceptible Staphylococcus aureus (MSSA). Little is still known about its pharmacodynamics (PD). The present study aimed to determine the pharmacokinetic (PK)/PD index and the PD-index value minimally required for efficacy. MICs of 305 MSSA isolates were measured to determine the wild-type distribution. The PD of 8 S. aureus, 1 S. pyogenes, and 1 S. agalactiae isolates were evaluated in a neutropenic murine thigh infection model. Two S. aureus isolates were used in a dose-fractionation study and a dose–response analysis was performed additionally in the in vivo model. Data were analyzed with a population PK and sigmoid maximum effect model. The end of the wild-type distribution was 1 mg/L. The percentage of time the unbound concentration was above MIC (%fT > MIC) was best correlated with efficacy. For S. aureus, median %fT > 0.25 × MIC required for 1-log reduction was 15%. The value for S. pyogenes was 10%fT > MIC and for S. agalactiae 22%fT > 0.25xMIC for a 1-log reduction. The effect of flucloxacillin reached a 2-log reduction of S. aureus at 20%fT > 0.25xMIC and also for S. pyogenes and S. agalactiae, a reduction was reached. These data may serve to optimize dosing regimens currently used in humans....
Doxorubicin (DOX) is an essential component in chemotherapy, and Astragali Radix (AR) is a widely used tonic herbal medicine. The combination of DOX and AR offers widespread, welldocumented advantages in treating cancer, e.g., reducing the risk of adverse effects. This study mainly aims to uncover the impact of AR on DOX disposition in vivo. Rats received a single intravenous dose of 5 mg/kg DOX following a single-dose co-treatment or multiple-dose pre-treatment of AR (10 g/kg × 1 or × 10). The concentrations of DOX in rat plasma and six tissues, including heart, liver, lung, kidney, spleen, and skeletal muscle, were determined by a fully validated LC-MS/MS method. A network-based approach was further employed to quantify the relationships between enzymes that metabolize and transport DOX and the targets of nine representative AR components in the human protein–protein interactome. We found that short-term (≤10 d) AR administration was ineffective in changing the plasma pharmacokinetics of DOX in terms of the area under the concentration–time curve (AUC, 1303.35 ± 271.74 μg/L*h versus 1208.74 ± 145.35 μg/L*h, p > 0.46), peak concentrations (Cmax, 1351.21 ± 364.86 μg/L versus 1411.01 ± 368.38 μg/L, p > 0.78), and halflife (t1/2, 31.79 ± 5.12 h versus 32.05 ± 6.95 h, p > 0.94), etc. Compared to the isotype control group, DOX concentrations in six tissues slightly decreased under AR pre-administration but only showed statistical significance (p < 0.05) in the liver. Using network analysis, we showed that five of the nine representative AR components were not localized to the vicinity of the DOX disposition-associated module. These findings suggest that AR may mitigate DOX-induced toxicity by affecting drug targets rather than drug disposition....
Lekethromycin (LKMS), a novel macrolide lactone, is still unclear regarding its absorption. Thus, we conducted this study to investigate the characteristics of LKMS in rats. We chose the ultrafiltration method to measure the plasma protein binding rate of LKMS. As a result, LKMS was characterized by quick absorption, delayed elimination, and extensive distribution in rats following intramuscular (im) and subcutaneous (sc) administration. Moreover, LKMS has a high protein binding rate (78–91%) in rats at a concentration range of 10–800 ng/mL. LKMS bioavailability was found to be approximately 84–139% and 52–77% after im and sc administration, respectively; however, LKMS was found to have extremely poor bioavailability after oral administration (po) in rats. The pharmacokinetic parameters cannot be considered linearly correlated with the administered dose. Additionally, LKMS and its corresponding metabolites were shown to be metabolically stable in the liver microsomes of rats, dogs, pigs, and humans. Notably, only one phase I metabolite was identified during in vitro study, suggesting most of drug was not converted. Collectively, LKMS had quick absorption but poor absorption after oral administration, extensive tissue distribution, metabolic stability, and slow elimination in rats....
The clinical use of nonsteroidal anti-inflammatory drugs is limited by their poor water solubility, unstable absorption, and low bioavailability. Solid lipid nanoparticles (SLNs) exhibit high biocompatibility and the ability to improve the bioavailability of drugs with low water solubility. Therefore, in this study, a tolfenamic acid solid lipid nanoparticle (TA-SLN) suspension was prepared by a hot melt–emulsification ultrasonication method to improve the sustained release and bioavailability of TA. The encapsulation efficiency (EE), loading capacity (LC), particle size, polydispersity index (PDI), and zeta potential of the TA-SLN suspension were 82.50 ± 0.63%, 25.13 ± 0.28%, 492 ± 6.51 nm, 0.309 ± 0.02 and −21.7 ± 0.51 mV, respectively. The TA-SLN suspension was characterized by dynamic light scattering (DLS), fluorescence microscopy (FM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FT-IR) spectroscopy. The TA-SLN suspension showed improved sustained drug release in vitro compared with the commercially available TA injection. After intramuscular administration to pigs (4 mg/kg), the TA-SLN suspension displayed increases in the pharmacokinetic parameters Tmax, T1/2, and MRT0–∞ by 4.39-, 3.78-, and 3.78-fold, respectively, compared with TA injection, and showed a relative bioavailability of 185.33%. Thus, this prepared solid lipid nanosuspension is a promising new formulation....
Loading....