Current Issue : January-March Volume : 2023 Issue Number : 1 Articles : 5 Articles
The rapid development of resistance by ureolytic bacteria which are involved in various life-threatening conditions such as gastric and duodenal cancer has induced the need to develop a new line of therapy which has anti-urease activity. A series of pyridine carboxamide and carbothioamide derivatives which also have some novel structures were synthesized via condensation reaction and investigated against urease for their inhibitory action. Among the series, 5-chloropyridine- 2 yl-methylene hydrazine carbothioamide (Rx-6) and pyridine 2-yl-methylene hydrazine carboxamide (Rx-7) IC50 = 1.07 ± 0.043 μM, 2.18 ± 0.058 μM both possessed significant activity. Furthermore, molecular docking and kinetic studies were performed for the most potent inhibitors to demonstrate the binding mode of the active pyridine carbothioamide with the enzyme urease and its mode of interaction. The ADME profile also showed that all the synthesized molecules present oral bioavailability and high GI absorption....
Skin aging is a progressive biological process of the human body, and it is not only time-dependent. Differently substituted 3-phenylcoumarins proved to efficiently inhibit tyrosinase. In the current work, new substitution patterns have been explored, and the biological studies were extended to other important enzymes involved in the processes of skin aging, as elastase, collagenase and hyaluronidase. From the studied series, five compounds presented inhibitory activity against tyrosinase, one compound against elastase, eight compounds against collagenase and two compounds against hyaluronidase, being five compounds dual inhibitors. The 3-(4-Bromophenyl)- 5,7-dihydroxycoumarin (1) and 3-(3-bromophenyl)-5,7-dihydroxycoumarin (2) presented the best profiles against tyrosinase (IC50 = 1.05 μM and 7.03 μM) and collagenase (IC50 = 123.4 μM and 110.4 μM); the 3-(4-bromophenyl)-6,7-dihydroxycoumarin (4) presented a good inhibition against tyrosinase and hyaluronidase; the 3-(3-bromophenyl)-6,7-dihydroxycoumarin (5) showed an effective tyrosinase and elastase inhibition; and 6,7-dihydroxy-3-(3-hydroxyphenyl)coumarin (11) presented a dual profile inhibition against collagenase and hyaluronidase. Furthermore, considering the overall activities tested, compounds 1 and 2 proved to be the most promising anti-aging compounds. These compounds also showed to have a photo-protective effect, without being cytotoxic to human skin keratinocyte cells. To predict the binding site with the target enzymes, computational studies were also carried out....
The etiological agent of some anogenital tract cancers is infection with the high-risk human papillomavirus (HPV). Currently, prophylactic vaccines against HPV have been validated, but the presence of drug treatment directed against the infection and its oncogenic effects remain essential. Among the best drug targets, viral oncoprotein E6 has been identified as a key factor in cell immortalization and tumor progression in HPV-positive cells. E6, through interaction with the cellular ubiquitin ligase E6AP, can promote the degradation of p53, a tumor suppressor protein. Therefore, suppression of the creation of the E6-E6AP complex is one of the essential strategies to inhibit the survival and proliferation of infected cells. In the present study, we proposed an in-silico approach for the discovery of small molecules with inhibitory activity on the E6-E6AP interaction. The first three compounds (F0679-0355, F33774-0275, and F3345-0326) were selected on the basis of virtual screening and prediction of the molecules’ ADMET properties and docking with E6 protein, these molecules were selected for further study by investigating their stability in the E6 complex and their inhibitory effect on the E6-E6AP interaction by molecular dynamics (MD) simulation. The identified molecules thus represent a good starting point for the development of anti-HPV drugs....
Rheumatoid arthritis (RA) is a systemic inflammatory disorder that can cause destructive joint disease, significant disability, and increased mortality. RA is the most frequent of all chronic inflammatory joint diseases, and its prevalence frequency in Pakistan is 1.6 per thousand people. Different cytokines and receptors were involved in the triggering of RA, including interleukin-6 (ILR-6), major histocompatibility complex (MHC) antigen human leukocyte (HLA-DR) receptor, and CD20. Several studies illustrated RA as an inherent immune response and triggered due to the “shared epitope.” Therefore, the involvement of all these receptors (IL-6, HLA-DR, and CD20) leads to the neurological, ocular, respiratory, cardiac, skin, and hematological manifestations that have been considered a potential therapeutic target for drug design. Various herbal, natural, and synthetic source inhibitors of interleukin-6 (IL-6), human leukocyte (HLA-DR), and CD20 were studied and reported previously. Reported inhibitors are compared to elucidate the best inhibitor for clinical trials, leading to the orally active drug. In this study, a computer-aided drug designing approach disclosed the potential inhibitors for all receptors based on their distinct binding affinity. Moreover, drug suitability was carried out using Lipinski’s rule by considering the adsorption, distribution, metabolism, and excretion (ADME) of ligands. Results elucidated “calycosin 7-O-glucoside” and “angeliferulate” as putative ligands for IL-6 and HLA-DR, respectively. However, the pharmacokinetic properties (ADMET) revealed angeliferulate as an effete ligand for the biological system compared to calycosin 7-O-glucoside. Based on docking, drug toxicity profiling or pharmacokinetics, and MD simulation stability, this study highlights orally active therapeutic inhibitors to inhibit the activity of pivotal receptors (IL6, HLA-DR, and CD20) of RA in humans. After clinical trials, the resultant inhibitors could be potential therapeutic agents in the drug development against RA....
Background. Worldwide, Neisseria gonorrhoeae-related sexually transmitted infections (STIs) continue to be of significant public health concern. This obligate-human pathogen has developed a number of defenses against both innate and adaptive immune responses during infection, some of which are mediated by the pathogen’s proteins. Hence, the uncharacterized proteins of N. gonorrhoeae can be annotated to get insight into the unique functions of this organism related to its pathogenicity and to find a more efficient therapeutic target. Methods. In this study, a hypothetical protein (HP) of N. gonorrhoeae was chosen for analysis and an in-silico approach was used to explore various properties such as physicochemical characteristics, subcellular localization, secondary structure, 3D structures, and functional annotation of that HP. Finally, a molecular docking analysis was performed to design an epitope-based vaccine against that HP. Results. This study has identified the potential role of the chosen HP of N. gonorrhoeae in plasmid transfer, cell cycle control, cell division, and chromosome partitioning. Acidic nature, thermal stability, cytoplasmic localization of the protein, and some of its other physicochemical properties have also been identified through this study. Molecular docking analysis has demonstrated that one of the T cell epitopes of the protein has a significant binding affinity with the human leukocyte antigen HLA-B∗15 : 01. Conclusions. The in-silico characterization of this protein will help us understand molecular mechanism of action of N. gonorrhoeae and get an insight into novel therapeutic identification processes. This research will, therefore, enhance our knowledge to find new medications to tackle this potential threat to humankind....
Loading....