Current Issue : January-March Volume : 2023 Issue Number : 1 Articles : 5 Articles
In this work, we analyze an eco-epidemiological model with the disease in the prey, considering a constant proportion of harvesting of either species or a prey refuge. The positive invariant set, the conditions of existence, and locally asymptotically stability of the equilibria are studied using the stability theory of ordinary differential equation. The global stability of border equilibria by constructing Lyapunov functions and permanence of the system by comparison theoremare proved. The numerical simulation further proved the correctness of the theoretical analysis. The result indicates that overfishing would lead to population extinction and a reasonable fishing strategy should keep the coexistence of populations....
The solution of many conduction heat transfer problems is found by twodimensional simplification using the analytical method since different points has different initial temperatures. The temperature at each point of a given element can be analyzed through the Heat Equation that, in some cases, converges to analytical solutions without precision and is far from the real. However, with the application of the Finite Difference Method (FDM), it is possible to solve it numerically in a relatively fast way, providing satisfactory results for the most varied boundary conditions and diverse geometries, characteristics of heat transfer problems by conduction. This study solved two problems inside a plate with and without heat generation involved in temperature distribution. Algorithms were built with the aid of the Matlab programming language, and applied to obtain a numerical solution using the FDM numerical method. The computational and analytical solutions were then compared. Under certain conditions of the parameters involved in the phenomenon of each problem, the numerical method was very efficient for presenting errors less than or equal to 0.003 and 0.03, respectively, for cases without and with heat generation....
In this paper, we are going to present a class of nonlinear equation solving methods. Steffensen’s method is a simple method for solving a nonlinear equation. By using Steffensen’s method and by combining this method with it, we obtain a new method. It can be said that this method, due to not using the function derivative, would be a good method for solving the nonlinear equation compared to Newton’s method. Finally, we will see that Newton’s method and Steffensen’s hybrid method both have a two-order convergence....
In this manuscript, Local dynamic behaviors including stability and Hopf bifurcation of a new four-dimensional quadratic autonomous system are studied both analytically and numerically. Determining conditions of equilibrium points on different parameters are derived. Next, the stability conditions are investigated by using Routh-Hurwitz criterion and bifurcation conditions are investigated by using Hopf bifurcation theory, respectively. It is found that Hopf bifurcation on the initial point is supercritical in this four-dimensional autonomous system. The theoretical results are verified by numerical simulation. Besides, the new four-dimensional autonomous system under the parametric conditions of hyperchaos is studied in detail. It is also found that the system can enter hyperchaos, first through Hopf bifurcation and then through periodic bifurcation....
One of the central issues in solving differential equations by numerical methods is the issue of approximation. The standard way of approximating differential equations by numerical methods (particularly difference methods) is to question the degree of approximation in the form O(hp ) . Here h is the grid step. In this case we have an implicit approximation. Based on the difference equation approximating the differential equation, the order of approximation is obtained using the Taylor series. However, it is possible to calculate the approximation error at nodal points based on the method of moving nodes. The method of moving nodes allows obtaining an approximate analytical expression. On the basis of the approximate form, it is possible to calculate the approximation error. The analytical form of the approximation makes it possible to efficiently calculate this error. On the other hand, the property of this error allows the construction of new improved circuits. In addition, based on these types of errors, you can create a differential analog of the difference equation that gives an exact approximation....
Loading....