Current Issue : April-June Volume : 2023 Issue Number : 2 Articles : 5 Articles
The article presents a comparison of exhaust emission test results from a passenger car with a spark-ignition engine examined with the WLTC (Worldwide Harmonized Light-Duty Vehicles Test Cycle) test, which was carried out on a chassis dynamometer, and examined with a RDE (Real Driving Emissions) test, which was conducted in real vehicle operating conditions. The exhaust emissions and the emitted particle number in the individual phases of both tests were determined. Large disparities were found in the results of the two tests. The cold start-up had a particularly significant impact on the test results in the case of the WLTC test. This impact is much greater than in the RDE test, mainly due to the fact that the RDE test is much longer than the WLTC test. Moreover, the engine load in the RDE test was greater than in the WLTC test. As a result of the conducted analyses, it was postulated that the research should be continued in stochastic conditions for the vehicle speed function, e.g., in the implementation of the speed function determined for the real conditions of the vehicle operation....
Hybrid electric vehicles are currently one of the most effective ways to increase the efficiency and reduce the pollutant emissions of internal combustion engines. Green hydrogen, produced with renewable energies, is an excellent alternative to fossil fuels in order to drastically reduce engine pollutant emissions. In this work, the author proposes the implementation of a hydrogen-fueled engine in a hybrid vehicle; the investigated hybrid powertrain is the power-split type in which the engine, two electric motor/generators and the drive shaft are coupled together by a planetary gear set; this arrangement allows the engine to operate independently from the wheels and, thus, to exploit the best efficiency operating points. A set of numeric simulations were performed in order to compare the gasoline-fueled engine with the hydrogen-fueled one in terms of the thermal efficiency and total energy consumed during a driving cycle. The simulation results show a mean engine efficiency increase of around 17% when fueled with hydrogen with respect to gasoline and an energy consumption reduction of around 15% in a driving cycle....
With the increasing number of automobiles on the road, passive safety has become a particularly important issue. In this paper, an energy-absorbing material, origami aluminum honeycomb, was manufactured by a welding process for use as an automobile energy absorbing box. The mechanical properties and deformation of welded origami aluminum honeycomb in three directions were studied through quasi-static and dynamic compression tests. The results show that the origami aluminum honeycomb had good mechanical energy absorption performance, and the optimal directions are identified. Combined with theoretical analysis, the errors between experiments and simulations are shown. The origami honeycomb structure was designed for use as an automobile energy absorbing box. Analysis shows that it could absorb at least 10% of the kinetic energy of a vehicle during a collision, and could play a role in protecting the interior of the vehicle....
In recent years, the electromobility market has been growing faster and faster. Electric scooters and scooter-sharing services offered for them, available in many cities around the world, have a special impact on its intensification. The constantly growing number of scooters and service operators brings many problems related to the proper functioning of services. In the literature, one can find attempts to solve the problems of scooters with references to the issues of transport, modeling and optimization, as well as legislative and social aspects. Technical issues, however, are overlooked. Among them, however, there is a problem with the appropriate selection of scooter models that can be used in scooter-sharing systems. Solving this type of problem may allow systems to be better matched to urban transport systems, increase the development of electromobility and encourage societies to transition from current means of transport (e.g., cars) to scooters. Paying attention to this research niche, the article is devoted to the selection of electric scooters for scooter sharing. This paper presents the author’s own research for the Polish market of scooter-sharing services. As part of the work, the author’s own list of factors from the point of view of which scooters can be assessed was developed; social research was conducted, considering the opinions of experts in the field of scooter sharing; and it was proposed to treat the problem of selecting scooters as a complex multicriteria decision-making problem. Moreover, the ELECTRE III method was used to solve this research problem in an innovative way. The research results indicate that when choosing a scooter, you should be guided primarily by such factors as the greatest range, equipping the vehicles with safety systems and the most powerful engine. Interestingly, the price of vehicles does not have to be the lowest possible. The article presents guidelines that support operators when upgrading or equipping systems with scooters and support individual users at the stage of deciding to buy a scooter....
The partial recovery of kinetic energy during braking allows the vehicle’s battery to be additionally charged and thus extends the range of an electric vehicle. Because of the different operating strategies of the braking energy recovery system, it is important to understand the factors influencing the level of recovered energy. The driving conditions at the place of use have a direct impact on the energy efficiency of an electric vehicle. The purpose of this paper was to analyze the energy recovered during braking in different driving conditions. The tests were based on the parameters of actual trips made along urban and suburban routes, and express roads. The collected actual speed profiles were used for the simulation studies. AVL cruise vehicle simulation software was used in the study. Simulation tests revealed that the levels of energy recovered during braking in an electric vehicle were the highest in urban conditions. The amount of energy recovered during urban driving can account for 20% of the total trip energy. In driving conditions characterized by different intensities caused by trips at different times of the day, similar values of recovered energy were recorded. When driving in the afternoon hours, the level of recovered energy per 1 km was about 2% lower than when driving in rush hour conditions. From the results presented in this paper, it can be concluded that driving conditions have an impact on the level of recovered energy. The type of road on which the electric vehicle drives is particularly important....
Loading....