Current Issue : July-September Volume : 2023 Issue Number : 3 Articles : 5 Articles
The eco-friendly high-performance thin-layer chromatographic (HPTLC) approaches for measuring cinnarizine (CIN) are scant in reported databases. As a result, the current work has developed and validated an eco-friendly HPTLC technique for assessing CIN in commercial formulations. The proposed approach was based the use of ethyl alcohol-water (90:10 v/v) as the eco-friendly mobile phase. A wavelength of 197 nm was used to detect CIN. The greenness score of the current approach was measured using the Analytical GREENness (AGREE) approach. The current approach was linear for CIN measurement in 50–800 ng band−1 range. The current approach for CIN measurement was validated successfully using ICH guidelines and was found to be linear, accurate (% recovery = 99.07–101.29%), precise (% CV = 0.80–0.95%), robust, sensitive (LOD = 16.81 ng band−1 and LOQ = 50.43 ng band−1), specific, selective, stability-indicating, and eco-friendly. The AGREE score for the current approach was calculated to be 0.80, showing an excellent greenness characteristic of the present approach. Under forced degradation conditions, the current approach was successful in separating the CIN degradation product, demonstrating the stability-indicating qualities/selectivity of the present approach. The % assay of CIN in commercial tablet brands A and B was found to be 98.64 and 101.22%, respectively, suggesting the reliability of the present approach in the pharmaceutical analysis of CIN in commercial dosage forms. The obtained findings indicated that CIN in commercial formulations could be routinely determined using the current approach....
The quantification of a natural bioactive compound, pterostilbene (PTT), in commercial capsule dosage form, solubility, and stability samples was carried out using a rapid and sensitive high-performance liquid chromatography (HPLC) approach. PTT was quantified on a Nucleodur (150 mm × 4.6 mm) RP C18 column with a particle size of 5 μm. Acetonitrile and water (90:10 v/v) made up the mobile phase, which was pumped at a flow speed of 1.0 mL/min. At a wavelength of 254 nm, PTT was detected. The developed HPLC approach was linear in 1–75 μg/g range, with a determination coefficient of 0.9995. The developed HPLC approach for PTT estimation was also rapid (Rt = 2.54 min), accurate (%recoveries = 98.10–101.93), precise (%CV = 0.59–1.25), and sensitive (LOD = 2.65 ng/g and LOQ = 7.95 ng/g). The applicability of developed HPLC approach was revealed by determining PTT in commercial capsule dosage form, solubility, and stability samples. The % assay of PTT in marketed capsules was determined to be 99.31%. The solubility of PTT in five different green solvents, including water, propylene glycol, ethanol, polyethylene glycol-400, and Carbitol was found to be 0.0180 mg/g, 1127 mg/g, 710.0 mg/g, 340.0 mg/g, and 571.0 mg/g, respectively. In addition, the precision and accuracy of stability samples were within the acceptable limit, hence PTT was found to be stable in solution. These results suggested that PTT in commercial products, solubility, and stability samples may be routinely determined using the established HPLC method....
Vitamins are a unit of organic chemical substances that are essential for the adequate working of the human body. Water-soluble B vitamins are involved in the regulation of many metabolic and regulatory processes. Due to the inability to synthesize endogenously, they must be supplied to the body with edibles or in the form of supplementation as drugs or dietary supplements. Maintaining the correct level of vitamins is extremely important in the treatment of various diseases. In the presented work, the qualitative and quantitative procedure of the assay of vitamins B1, B2, B5, B6 and B12 in pharmaceutical products by chromatographic technique coupled with densitometric detection was developed, optimized and validated. During the optimization process, TLC Silica gel 60 F254 plates were chosen as a suitable stationary, and the mixture consisted of chloroform: ethanol: water: glacial acetic acid (2:8:2:0.5 v/v/v/v) as a mobile phase. Densitometric detection was conducted at a maximum absorbance λ = 254 nm for vitamins B1, B2, B6 and B12 and λ = 550 nm for vitamin B5 (after dyeing with ninhydrin). In the next step, the developed procedure was validated in accordance with the ICH guidelines. The recorded correlation coefficients obtained in all tested concentrations of B vitamins, ranging from 0.9947 to 0.9996, confirmed good linearity. The method is characterized by good precision, RSD data ranging from 0.62 to 1.52% for direct precision and from 0.84 to 1.4% for intermediate precision. Accuracy was proven by a recovery test at three concentration levels, with values close to 100% with RSD less than 1%. The calculated LOD and LOQ data for all tested vitamins B1, B2, B5, B6 and B12 were belove 1 μg/spot. The developed method was then used to quantitatively and qualitatively assess the content of B vitamins in medicinal products and dietary supplements with satisfactory results....
Yacon leaf (Smallanthus sonchifolius, Asteraceae) ethanolic extracts are widely used in herbal medicine preparation for diabetes. They contain two sesquiterpene lactones (enhydrin (1) and uvedalin (2)) as major bioactive compounds. To provide a suitable method of analysis for the extract’s quality control, we developed and validated a simultaneous HPLC-UV method using the compounds as markers. Compounds 1 and 2 were isolated using a freeze crystallization technique followed by a preparative HPLC. Spectrometry data for 1 and 2 were determined and compared to the literature. Chromatographic separation was carried out for 30 min with a mobile phase that used 60% water and 40% acetonitrile and a C18 column (250 × 4.6 mm, 5 μm) as the stationary phase. The flow was set to 1 mL min−1 and detection was conducted at 210 nm. The validation method was conducted according to the ICH guidelines, which included linearity, precision, accuracy, LOD, and LOQ. The calibration curve of both compounds was linear (R 2 > 0.9999), with the limit of detection and quantification as follows, respectively, 0.52 and 1.57 μg/mL for 1, and 0.144 and 0.436 μg/mL for 2. The percentages of recovery and repeatability (%RSD) were, 101.46 and 0.30% for 1, and 97.68 and 0.08% for 2, respectively. The 1 and 2 were 1.67 and 0.88% in the Ykal extract, and 1.26 and 0.56% in the Ycin extract, respectively. The method was found to be linear, precise, accurate, and suitable to be applied for control quality analyses of yacon leaf extract....
Gongjindan (GJD) is a traditional Korean medicine consisting of four herbal medicines and two animal-derived medicines, and is taken as a tonic in Republic of Korea. In this study, the goal was to develop and validate a simultaneous analytical method to quantify eight compounds in commercially available GJD samples using high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography with tandem mass spectrometry (UPLC–MS/MS), and gas chromatography with tandem mass spectrometry (GC–MS/MS) systems. In HPLC and UPLC– MS/MS, seven components (gallic acid, 5-(hydroxymethyl)furfural, morroniside, loganin, nodakenin, decursin, and decursinol angelate) were separated and quantified using a distilled water–acetonitrile mobile phase system on a Capcell Pak UG80 C18 column and an Acquity UPLC BEH C18 column, respectively. Muscone was quantified using GC–MS/MS. The developed assays were validated by evaluating the linearity, limit of detection, limit of quantitation, recovery, and precision. In the regression equations of all compounds, the coefficient of determination was ≥0.9917, showing good linearity. The recovery was 93.70–108.17%, and the relative standard deviation values in the precision test were all <1.50%. Using the developed analysis methods, GJD samples were determined to contain the eight target compounds in concentrations from non-detected to 10.75 mg/g. The analytical assays developed and validated in this study can be used to obtain data for the quality control of commercially available GJDs and for the further expansion of efficacy and clinical studies....
Loading....